File: KinetoThermostat.h

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (803 lines) | stat: -rw-r--r-- 25,491 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
#ifndef KINETOTHERMOSTAT_H
#define KINETOTHERMOSTAT_H

#include "AtomicRegulator.h"
#include "PerAtomQuantityLibrary.h"
#include "Kinetostat.h"
#include "Thermostat.h"
#include <map>
#include <set>
#include <string>

namespace ATC {

  static const int myCouplingMaxIterations = 50;

  // forward declarations
  class MomentumTimeIntegrator;
  class ThermalTimeIntegrator;
  class AtfShapeFunctionRestriction;
  class FundamentalAtomQuantity;
  class PrescribedDataManager;

  /**
   *  @class  KinetoThermostat
   *  @brief  Manager class for atom-continuum simulataneous control of momentum and thermal energy
   */
  class KinetoThermostat : public AtomicRegulator {

  public:

    // constructor
    KinetoThermostat(ATC_Coupling * atc,
                     const std::string & regulatorPrefix = "");

    // destructor
    virtual ~KinetoThermostat(){};

    /** parser/modifier */
    virtual bool modify(int narg, char **arg);

    /** instantiate up the desired method(s) */
    virtual void construct_methods();


    // data access, intended for method objects
    /** reset the nodal power to a prescribed value */
    virtual void reset_lambda_contribution(const DENS_MAT & target,
                                           const FieldName field);

    /** return value for the max number of mechanical/thermal coupling iterations */
    int coupling_max_iterations() const {return couplingMaxIterations_;};

  protected:

    /** maximum number of iterations used to solved coupled thermo/mechanical problem */
    int couplingMaxIterations_;

  private:

    // DO NOT define this
    KinetoThermostat();

  };

  /**
   *  @class  KinetoThermostatShapeFunction
   *  @brief  Class for kinetostat/thermostat algorithms using the shape function matrices
   *          (thermostats have general for of N^T w N lambda = rhs)
   */

  class KinetoThermostatShapeFunction : public RegulatorMethod {


  public:

    KinetoThermostatShapeFunction(AtomicRegulator * kinetoThermostat,
                                  int couplingMaxIterations,
                                  const std::string & /* regulatorPrefix */) : RegulatorMethod(kinetoThermostat),
      couplingMaxIterations_(couplingMaxIterations) {};
    KinetoThermostatShapeFunction(AtomicRegulator * kinetoThermostat,
                                  int couplingMaxIterations)
      : RegulatorMethod(kinetoThermostat), couplingMaxIterations_(couplingMaxIterations) {};

    virtual ~KinetoThermostatShapeFunction() {};

    /** instantiate all needed data */
    virtual void construct_transfers() = 0;

    /** initialize all data */
    virtual void initialize() {tolerance_ = atomicRegulator_->tolerance();};

  protected:

    /** maximum number of iterations between energy and momentum regulators */
    int couplingMaxIterations_;

    /** tolerance */
    double tolerance_;

  private:

    // DO NOT define this
    KinetoThermostatShapeFunction();

  };

  /**
   *  @class  VelocityRescaleCombined
   *  @brief  Enforces constraints on atomic velocity based on FE temperature and velocity
   */

  class VelocityRescaleCombined : public VelocityGlc {

  public:

    friend class KinetoThermostatRescale; // since this is basically a set of member functions for friend

    VelocityRescaleCombined(AtomicRegulator * kinetostat);

    virtual ~VelocityRescaleCombined(){};

    /** pre-run initialization of method data */
    virtual void initialize();

    /** applies kinetostat to atoms */
    virtual void apply_mid_predictor(double /* dt */){};
    /** applies kinetostat to atoms */
    virtual void apply_post_corrector(double /* dt */){};

    /** local shape function matrices are incompatible with this mode */
    virtual bool use_local_shape_functions() const {return false;};

  protected:

    // data
    /** reference to AtC FE velocity */
    DENS_MAN & velocity_;

    /** RHS correct based on thermostat */
    DENS_MAN * thermostatCorrection_;

    // methods
    /** sets up appropriate rhs for kinetostat equations */
    virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);

    // disable un-needed functionality
    /** does initial filtering operations before main computation */
    virtual void apply_pre_filtering(double /* dt */){};
    /** applies kinetostat correction to atoms */
    virtual void apply_kinetostat(double /* dt */) {};
    /** computes the nodal FE force applied by the kinetostat */
    virtual void compute_nodal_lambda_force(double /* dt */){};
    /** apply any required corrections for localized kinetostats */
    virtual void apply_localization_correction(const DENS_MAT & /* source */,
                                               DENS_MAT & /* nodalField */,
                                               double /* weight */){};
    virtual void apply_localization_correction(const DENS_MAT & /* source */,
                                               DENS_MAT & /* nodalField */){};

  private:

    // DO NOT define this
    VelocityRescaleCombined();

  };

  /**
   *  @class  ThermostatRescaleCombined
   *  @brief  Enforces constraint on atomic kinetic energy based on FE temperature and velocity
   */

  class ThermostatRescaleCombined : public ThermostatRescale {

  public:

    ThermostatRescaleCombined(AtomicRegulator * thermostat);

    virtual ~ThermostatRescaleCombined() {};

    /** pre-run initialization of method data */
    virtual void initialize();

    // deactivate un-needed methods
    /** applies thermostat to atoms in the post-corrector phase */
    virtual void apply_post_corrector(double /* dt */){};

  protected:

    // data
    /** RHS correct based on kinetostat */
    DENS_MAN * kinetostatCorrection_;

    // deactivate un-needed methods
    /** apply solution to atomic quantities */
    virtual void apply_to_atoms(PerAtomQuantity<double> * /* atomVelocities */){};

    /** construct the RHS vector */
    virtual void set_rhs(DENS_MAT & rhs);

  private:

    // DO NOT define this
    ThermostatRescaleCombined();

  };

  /**
   *  @class  KinetoThermostatRescale
   *  @brief  Enforces constraints on atomic kinetic energy and velocity based on FE temperature and velocity
   */

  class KinetoThermostatRescale : public KinetoThermostatShapeFunction {

  public:

    KinetoThermostatRescale(AtomicRegulator * kinetoThermostat,
                            int couplingMaxIterations);

    virtual ~KinetoThermostatRescale();

    /** instantiate all needed data */
    virtual void construct_transfers();

    /** pre-run initialization of method data */
    virtual void initialize();

    /** applies thermostat to atoms in the post-corrector phase */
    virtual void apply_post_corrector(double dt);

    /** compute boundary flux, requires thermostat input since it is part of the coupling scheme */
    virtual void compute_boundary_flux(FIELDS & /* fields */)
    {boundaryFlux_[TEMPERATURE] = 0.; boundaryFlux_[VELOCITY] = 0.;};

    /** get data for output */
    virtual void output(OUTPUT_LIST & outputData);

  protected:

    // methods
    /** apply solution to atomic quantities */
    virtual void apply_to_atoms(PerAtomQuantity<double> * atomVelocities);

    /** creates the appropriate rescaling thermostat */
    virtual ThermostatRescale * construct_rescale_thermostat();

    // data
    /** pointer to atom velocities */
    FundamentalAtomQuantity * atomVelocities_;

    /** clone of FE velocity field */
    DENS_MAN & nodalVelocities_;

    /** lambda coupling parameter for momentum */
    DENS_MAN * lambdaMomentum_;

    /** lambda coupling parameter for energy */
    DENS_MAN * lambdaEnergy_;

    /** pointer to rescaled velocity fluctuations */
    PerAtomQuantity<double> * atomicFluctuatingVelocityRescaled_;

    /** pointer to streaming velocity */
    PerAtomQuantity<double> * atomicStreamingVelocity_;

    /** rescaling thermostat */
    ThermostatRescale * thermostat_;

    /** velocity regulating kinetostat */
    VelocityRescaleCombined * kinetostat_;

    // workspace
    DENS_MAT _lambdaEnergyOld_, _lambdaMomentumOld_, _diff_;

  private:

    // DO NOT define this
    KinetoThermostatRescale();

  };

  /**
   *  @class  ThermostatRescaleMixedKePeCombined
   *  @brief  Enforces constraint on atomic kinetic energy based on FE temperature and velocity when the temperature is comprised of both KE and PE contributions
   */

  class ThermostatRescaleMixedKePeCombined : public ThermostatRescaleMixedKePe {

  public:

    ThermostatRescaleMixedKePeCombined(AtomicRegulator * thermostat);

    virtual ~ThermostatRescaleMixedKePeCombined() {};

    /** pre-run initialization of method data */
    virtual void initialize();

    // deactivate un-needed methods
    /** applies thermostat to atoms in the post-corrector phase */
    virtual void apply_post_corrector(double /* dt */){};

  protected:

    // data
    /** RHS correct based on kinetostat */
    DENS_MAN * kinetostatCorrection_;

    // deactivate un-needed methods
    /** apply solution to atomic quantities */
    virtual void apply_to_atoms(PerAtomQuantity<double> * /* atomVelocities */){};

    /** construct the RHS vector */
    virtual void set_rhs(DENS_MAT & rhs);

  private:

    // DO NOT define this
    ThermostatRescaleMixedKePeCombined();

  };

  /**
   *  @class  KinetoThermostatRescaleMixedKePe
   *  @brief  Enforces constraint on atomic kinetic energy based on FE temperature
   *          when the temperature is a mix of the KE and PE
   */

  class KinetoThermostatRescaleMixedKePe : public KinetoThermostatRescale {

  public:

    KinetoThermostatRescaleMixedKePe(AtomicRegulator * kinetoThermostat,
                                     int couplingMaxIterations);

    virtual ~KinetoThermostatRescaleMixedKePe() {};

  protected:

    /** creates the appropriate rescaling thermostat */
    virtual ThermostatRescale * construct_rescale_thermostat();

  private:

    // DO NOT define this
    KinetoThermostatRescaleMixedKePe();

  };

  /**
   *  @class  KinetoThermostatGlcFs
   *  @brief  Class for regulation algorithms based on Gaussian least constraints (GLC) for fractional step (FS) algorithsm
   */

  class KinetoThermostatGlcFs : public KinetoThermostatShapeFunction {

  public:

    KinetoThermostatGlcFs(AtomicRegulator * kinetoThermostat,
                          int couplingMaxIterations,
                          const std::string & regulatorPrefix = "");

    virtual ~KinetoThermostatGlcFs() {};

    /** instantiate all needed data */
    virtual void construct_transfers();

    /** pre-run initialization of method data */
    virtual void initialize();

    /** applies thermostat to atoms in the predictor phase */
    virtual void apply_pre_predictor(double dt);

    /** applies thermostat to atoms in the pre-corrector phase */
    virtual void apply_pre_corrector(double dt);

    /** applies thermostat to atoms in the post-corrector phase */
    virtual void apply_post_corrector(double dt);

    /** get data for output */
    virtual void output(OUTPUT_LIST & outputData);

    /* flag for performing the full lambda prediction calculation */
    bool full_prediction();

  protected:

    // methods

    /** apply forces to atoms */
    virtual void apply_to_atoms(PerAtomQuantity<double> * atomicVelocity,
                                const DENS_MAN * nodalAtomicMomentum,
                                const DENS_MAN * nodalAtomicEnergy,
                                const DENS_MAT & lambdaForce,
                                DENS_MAT & nodalAtomicLambdaForce,
                                DENS_MAT & nodalAtomicLambdaPower,
                                double dt);

    // USE BASE CLASSES FOR THESE
    /** add contributions from regulator to FE momentum */
    virtual void add_to_momentum(const DENS_MAT & nodalLambdaForce,
                               DENS_MAT & deltaForce,
                               double dt) = 0;

    /** add contributions from regulator to FE energy */
    virtual void add_to_energy(const DENS_MAT & nodalLambdaPower,
                               DENS_MAT & deltaEnergy,
                               double dt) = 0;

    /* sets up and solves the linear system for lambda */
    virtual void compute_lambda(double dt,
                                bool iterateSolution = true);

    // member data
    /** reference to AtC FE velocity */
    DENS_MAN & velocity_;

    /** reference to AtC FE temperature */
    DENS_MAN & temperature_;

    /** pointer to a time filtering object */
    TimeFilter * timeFilter_;

    /** force induced by lambda */
    DENS_MAN * nodalAtomicLambdaForce_;

    /** filtered lambda force */
    DENS_MAN * lambdaForceFiltered_;

    /** power induced by lambda */
    DENS_MAN * nodalAtomicLambdaPower_;

    /** filtered lambda power */
    DENS_MAN * lambdaPowerFiltered_;

    /** atomic force induced by lambda */
    AtomicThermostatForce * atomRegulatorForces_;

    /** atomic force induced by thermostat lambda */
    AtomicThermostatForce * atomThermostatForces_;

    /** pointer to atom masses */
    FundamentalAtomQuantity * atomMasses_;

    /** pointer to atom velocities */
    FundamentalAtomQuantity * atomVelocities_;

    /** hack to determine if first timestep has been passed */
    bool isFirstTimestep_;

    /** nodal atomic momentum */
    DENS_MAN * nodalAtomicMomentum_;

    /** nodal atomic energy */
    DENS_MAN * nodalAtomicEnergy_;

    /** local version of velocity used as predicted final veloctiy */
    PerAtomQuantity<double> * atomPredictedVelocities_;

    /** predicted nodal atomic momentum */
    AtfShapeFunctionRestriction * nodalAtomicPredictedMomentum_;

    /** predicted nodal atomic energy */
    AtfShapeFunctionRestriction * nodalAtomicPredictedEnergy_;

    /** pointer for force applied in first time step */
    DENS_MAN * firstHalfAtomForces_;

    /** FE momentum change from regulator during predictor phase in second half of timestep */
    DENS_MAT deltaMomentum_;

    /** FE temperature change from regulator during predictor phase in second half of timestep */
    DENS_MAT deltaEnergy1_;

    /** FE temperature change from regulator during corrector phase in second half of timestep */
    DENS_MAT deltaEnergy2_;

    /** fraction of timestep over which constraint is exactly enforced */
    double dtFactor_;

    // workspace
    DENS_MAT _lambdaForceOutput_; // force applied by lambda in output format
    DENS_MAT _lambdaPowerOutput_; // power applied by lambda in output format
    DENS_MAT _velocityDelta_; // change in velocity when lambda force is applied

  private:

    // DO NOT define this
    KinetoThermostatGlcFs();

  };
/* #ifdef WIP_JAT */
/*   /\** */
/*    *  @class  ThermostatFlux */
/*    *  @brief  Class enforces GLC on atomic forces based on FE power when using fractional step time integration */
/*    *\/ */

/*   class ThermostatFlux : public ThermostatGlcFs { */

/*   public: */

/*     ThermostatFlux(Thermostat * thermostat, */
/*                    const std::string & regulatorPrefix = ""); */

/*     virtual ~ThermostatFlux() {}; */

/*     /\** instantiate all needed data *\/ */
/*     virtual void construct_transfers(); */

/*     /\** pre-run initialization of method data *\/ */
/*     virtual void initialize(); */

/*   protected: */

/*     /\** sets up appropriate rhs for thermostat equations *\/ */
/*     virtual void set_thermostat_rhs(DENS_MAT & rhs, */
/*                                     double dt); */

/*     /\** add contributions from thermostat to FE energy *\/ */
/*     virtual void add_to_energy(const DENS_MAT & nodalLambdaPower, */
/*                                DENS_MAT & deltaEnergy, */
/*                                double dt); */

/*     /\** sets up the transfer which is the set of nodes being regulated *\/ */
/*     virtual void construct_regulated_nodes(); */

/*     // data */
/*     /\** reference to ATC sources coming from prescribed data, AtC coupling, and extrinsic coupling *\/ */
/*     DENS_MAN & heatSource_; */

/*   private: */

/*     // DO NOT define this */
/*     ThermostatFlux(); */

/*   }; */

/*   /\** */
/*    *  @class  ThermostatFixed */
/*    *  @brief  Class enforces GLC on atomic forces based on FE power when using fractional step time integration */
/*    *\/ */

/*   class ThermostatFixed : public ThermostatGlcFs { */

/*   public: */

/*     ThermostatFixed(Thermostat * thermostat, */
/*                     const std::string & regulatorPrefix = ""); */

/*     virtual ~ThermostatFixed() {}; */

/*     /\** instantiate all needed data *\/ */
/*     virtual void construct_transfers(); */

/*     /\** pre-run initialization of method data *\/ */
/*     virtual void initialize(); */

/*     /\** applies thermostat to atoms in the predictor phase *\/ */
/*     virtual void apply_pre_predictor(double dt); */

/*     /\** applies thermostat to atoms in the pre-corrector phase *\/ */
/*     virtual void apply_pre_corrector(double dt); */

/*     /\** applies thermostat to atoms in the post-corrector phase *\/ */
/*     virtual void apply_post_corrector(double dt); */

/*     /\** compute boundary flux, requires thermostat input since it is part of the coupling scheme *\/ */
/*     virtual void compute_boundary_flux(FIELDS & fields) */
/*       {boundaryFlux_[TEMPERATURE] = 0.;}; */

/*     /\** determine if local shape function matrices are needed *\/ */
/*     virtual bool use_local_shape_functions() const {return atomicRegulator_->use_localized_lambda();}; */

/*   protected: */

/*     // methods */
/*     /\** initialize data for tracking the change in nodal atomic temperature *\/ */
/*     virtual void initialize_delta_nodal_atomic_energy(double dt); */

/*     /\** compute the change in nodal atomic temperature *\/ */
/*     virtual void compute_delta_nodal_atomic_energy(double dt); */

/*     /\** sets up appropriate rhs for thermostat equations *\/ */
/*     virtual void set_thermostat_rhs(DENS_MAT & rhs, */
/*                                     double dt); */

/*     /\** add contributions from thermostat to FE energy *\/ */
/*     virtual void add_to_energy(const DENS_MAT & nodalLambdaPower, */
/*                                DENS_MAT & deltaEnergy, */
/*                                double dt); */

/*     /\* sets up and solves the linear system for lambda *\/ */
/*     virtual void compute_lambda(double dt, */
/*                                 bool iterateSolution = true); */

/*     /\** flag for halving the applied force to mitigate numerical errors *\/ */
/*     bool halve_force(); */

/*     /\** sets up the transfer which is the set of nodes being regulated *\/ */
/*     virtual void construct_regulated_nodes(); */

/*     // data */
/*     /\** change in FE energy over a timestep *\/ */
/*     DENS_MAT deltaFeEnergy_; */

/*     /\** initial FE energy used to compute change *\/ */
/*     DENS_MAT initialFeEnergy_; */

/*     /\** change in restricted atomic FE energy over a timestep *\/ */
/*     DENS_MAT deltaNodalAtomicEnergy_; */

/*     /\** initial restricted atomic FE energy used to compute change *\/ */
/*     DENS_MAT initialNodalAtomicEnergy_; */

/*     /\** filtered nodal atomic energy *\/ */
/*     DENS_MAN nodalAtomicEnergyFiltered_; */

/*     /\** forces depending on predicted velocities for correct updating with fixed nodes *\/ */
/*     AtomicThermostatForce * atomThermostatForcesPredVel_; */

/*     /\** coefficient to account for effect of time filtering on rhs terms *\/ */
/*     double filterCoefficient_; */

/*     /\** kinetic energy multiplier in total energy (used for temperature expression) *\/ */
/*     double keMultiplier_; */

/*     // workspace */
/*     DENS_MAT _tempNodalAtomicEnergyFiltered_; // stores filtered energy change in atoms for persistence during predictor */

/*   private: */

/*     // DO NOT define this */
/*     ThermostatFixed(); */

/*   }; */

/*   /\** */
/*    *  @class  ThermostatFluxFiltered */
/*    *  @brief  Class enforces GLC on atomic forces based on FE power when using fractional step time integration */
/*    *          in conjunction with time filtering */
/*    *\/ */

/*   class ThermostatFluxFiltered : public ThermostatFlux { */

/*   public: */

/*     ThermostatFluxFiltered(Thermostat * thermostat, */
/*                            const std::string & regulatorPrefix = ""); */

/*     virtual ~ThermostatFluxFiltered() {}; */

/*     /\** pre-run initialization of method data *\/ */
/*     virtual void initialize(); */

/*     /\** applies thermostat to atoms in the post-corrector phase *\/ */
/*     virtual void apply_post_corrector(double dt); */

/*     /\** get data for output *\/ */
/*     virtual void output(OUTPUT_LIST & outputData); */

/*   protected: */

/*     /\** sets up appropriate rhs for thermostat equations *\/ */
/*     virtual void set_thermostat_rhs(DENS_MAT & rhs, */
/*                                     double dt); */

/*     /\** add contributions from thermostat to FE energy *\/ */
/*     virtual void add_to_energy(const DENS_MAT & nodalLambdaPower, */
/*                                DENS_MAT & deltaEnergy, */
/*                                double dt); */

/*     // data */
/*     /\** heat source time history required to get instantaneous heat sources *\/ */
/*     DENS_MAT heatSourceOld_; */
/*     DENS_MAT instantHeatSource_; */
/*     DENS_MAT timeStepSource_; */

/*   private: */

/*     // DO NOT define this */
/*     ThermostatFluxFiltered(); */

/*   }; */

/*   /\** */
/*    *  @class  ThermostatFixedFiltered */
/*    *  @brief  Class for thermostatting using the temperature matching constraint and is compatible with */
/*  the fractional step time-integration with time filtering */
/*    *\/ */

/*   class ThermostatFixedFiltered : public ThermostatFixed { */

/*   public: */

/*     ThermostatFixedFiltered(Thermostat * thermostat, */
/*                             const std::string & regulatorPrefix = ""); */

/*     virtual ~ThermostatFixedFiltered() {}; */

/*     /\** get data for output *\/ */
/*     virtual void output(OUTPUT_LIST & outputData); */

/*   protected: */

/*     // methods */
/*     /\** initialize data for tracking the change in nodal atomic temperature *\/ */
/*     virtual void initialize_delta_nodal_atomic_energy(double dt); */

/*     /\** compute the change in nodal atomic temperature *\/ */
/*     virtual void compute_delta_nodal_atomic_energy(double dt); */

/*     /\** sets up appropriate rhs for thermostat equations *\/ */
/*     virtual void set_thermostat_rhs(DENS_MAT & rhs, */
/*                                     double dt); */

/*     /\** add contributions from thermostat to temperature for uncoupled nodes *\/ */
/*     virtual void add_to_energy(const DENS_MAT & nodalLambdaPower, */
/*                                DENS_MAT & deltaEnergy, */
/*                                double dt); */

/*   private: */

/*     // DO NOT define this */
/*     ThermostatFixedFiltered(); */

/*   }; */

/*   /\** */
/*    *  @class  ThermostatFluxFixed */
/*    *  @brief  Class for thermostatting using the temperature matching constraint one one set of nodes and the flux matching constraint on another */
/*    *\/ */

/*   class ThermostatFluxFixed : public RegulatorMethod { */

/*   public: */

/*     ThermostatFluxFixed(Thermostat * thermostat, */
/*                         bool constructThermostats = true); */

/*     virtual ~ThermostatFluxFixed(); */

/*     /\** instantiate all needed data *\/ */
/*     virtual void construct_transfers(); */

/*     /\** pre-run initialization of method data *\/ */
/*     virtual void initialize(); */

/*     /\** applies thermostat to atoms in the predictor phase *\/ */
/*     virtual void apply_pre_predictor(double dt); */

/*     /\** applies thermostat to atoms in the pre-corrector phase *\/ */
/*     virtual void apply_pre_corrector(double dt); */

/*     /\** applies thermostat to atoms in the post-corrector phase *\/ */
/*     virtual void apply_post_corrector(double dt); */

/*     /\** get data for output *\/ */
/*     virtual void output(OUTPUT_LIST & outputData); */

/*     /\** compute boundary flux, requires thermostat input since it is part of the coupling scheme *\/ */
/*     virtual void compute_boundary_flux(FIELDS & fields) */
/*       {thermostatBcs_->compute_boundary_flux(fields);}; */

/*   protected: */

/*     // data */
/*     /\** thermostat for imposing the fluxes *\/ */
/*     ThermostatFlux * thermostatFlux_; */

/*     /\** thermostat for imposing fixed nodes *\/ */
/*     ThermostatFixed * thermostatFixed_; */

/*     /\** pointer to whichever thermostat should compute the flux, based on coupling method *\/ */
/*     ThermostatGlcFs * thermostatBcs_; */

/*   private: */

/*     // DO NOT define this */
/*     ThermostatFluxFixed(); */
/*   }; */

/*   /\** */
/*    *  @class  ThermostatFluxFixedFiltered */
/*    *  @brief  Class for thermostatting using the temperature matching constraint one one set of nodes and the flux matching constraint on another with time filtering */
/*    *\/ */

/*   class ThermostatFluxFixedFiltered : public ThermostatFluxFixed { */

/*   public: */

/*     ThermostatFluxFixedFiltered(Thermostat * thermostat); */

/*     virtual ~ThermostatFluxFixedFiltered(){}; */

/*   private: */

/*     // DO NOT define this */
/*     ThermostatFluxFixedFiltered(); */

/*   }; */
/* #endif */

};

#endif