1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
|
#ifndef KINETOTHERMOSTAT_H
#define KINETOTHERMOSTAT_H
#include "AtomicRegulator.h"
#include "PerAtomQuantityLibrary.h"
#include "Kinetostat.h"
#include "Thermostat.h"
#include <map>
#include <set>
#include <string>
namespace ATC {
static const int myCouplingMaxIterations = 50;
// forward declarations
class MomentumTimeIntegrator;
class ThermalTimeIntegrator;
class AtfShapeFunctionRestriction;
class FundamentalAtomQuantity;
class PrescribedDataManager;
/**
* @class KinetoThermostat
* @brief Manager class for atom-continuum simulataneous control of momentum and thermal energy
*/
class KinetoThermostat : public AtomicRegulator {
public:
// constructor
KinetoThermostat(ATC_Coupling * atc,
const std::string & regulatorPrefix = "");
// destructor
virtual ~KinetoThermostat(){};
/** parser/modifier */
virtual bool modify(int narg, char **arg);
/** instantiate up the desired method(s) */
virtual void construct_methods();
// data access, intended for method objects
/** reset the nodal power to a prescribed value */
virtual void reset_lambda_contribution(const DENS_MAT & target,
const FieldName field);
/** return value for the max number of mechanical/thermal coupling iterations */
int coupling_max_iterations() const {return couplingMaxIterations_;};
protected:
/** maximum number of iterations used to solved coupled thermo/mechanical problem */
int couplingMaxIterations_;
private:
// DO NOT define this
KinetoThermostat();
};
/**
* @class KinetoThermostatShapeFunction
* @brief Class for kinetostat/thermostat algorithms using the shape function matrices
* (thermostats have general for of N^T w N lambda = rhs)
*/
class KinetoThermostatShapeFunction : public RegulatorMethod {
public:
KinetoThermostatShapeFunction(AtomicRegulator * kinetoThermostat,
int couplingMaxIterations,
const std::string & /* regulatorPrefix */) : RegulatorMethod(kinetoThermostat),
couplingMaxIterations_(couplingMaxIterations) {};
KinetoThermostatShapeFunction(AtomicRegulator * kinetoThermostat,
int couplingMaxIterations)
: RegulatorMethod(kinetoThermostat), couplingMaxIterations_(couplingMaxIterations) {};
virtual ~KinetoThermostatShapeFunction() {};
/** instantiate all needed data */
virtual void construct_transfers() = 0;
/** initialize all data */
virtual void initialize() {tolerance_ = atomicRegulator_->tolerance();};
protected:
/** maximum number of iterations between energy and momentum regulators */
int couplingMaxIterations_;
/** tolerance */
double tolerance_;
private:
// DO NOT define this
KinetoThermostatShapeFunction();
};
/**
* @class VelocityRescaleCombined
* @brief Enforces constraints on atomic velocity based on FE temperature and velocity
*/
class VelocityRescaleCombined : public VelocityGlc {
public:
friend class KinetoThermostatRescale; // since this is basically a set of member functions for friend
VelocityRescaleCombined(AtomicRegulator * kinetostat);
virtual ~VelocityRescaleCombined(){};
/** pre-run initialization of method data */
virtual void initialize();
/** applies kinetostat to atoms */
virtual void apply_mid_predictor(double /* dt */){};
/** applies kinetostat to atoms */
virtual void apply_post_corrector(double /* dt */){};
/** local shape function matrices are incompatible with this mode */
virtual bool use_local_shape_functions() const {return false;};
protected:
// data
/** reference to AtC FE velocity */
DENS_MAN & velocity_;
/** RHS correct based on thermostat */
DENS_MAN * thermostatCorrection_;
// methods
/** sets up appropriate rhs for kinetostat equations */
virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
// disable un-needed functionality
/** does initial filtering operations before main computation */
virtual void apply_pre_filtering(double /* dt */){};
/** applies kinetostat correction to atoms */
virtual void apply_kinetostat(double /* dt */) {};
/** computes the nodal FE force applied by the kinetostat */
virtual void compute_nodal_lambda_force(double /* dt */){};
/** apply any required corrections for localized kinetostats */
virtual void apply_localization_correction(const DENS_MAT & /* source */,
DENS_MAT & /* nodalField */,
double /* weight */){};
virtual void apply_localization_correction(const DENS_MAT & /* source */,
DENS_MAT & /* nodalField */){};
private:
// DO NOT define this
VelocityRescaleCombined();
};
/**
* @class ThermostatRescaleCombined
* @brief Enforces constraint on atomic kinetic energy based on FE temperature and velocity
*/
class ThermostatRescaleCombined : public ThermostatRescale {
public:
ThermostatRescaleCombined(AtomicRegulator * thermostat);
virtual ~ThermostatRescaleCombined() {};
/** pre-run initialization of method data */
virtual void initialize();
// deactivate un-needed methods
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double /* dt */){};
protected:
// data
/** RHS correct based on kinetostat */
DENS_MAN * kinetostatCorrection_;
// deactivate un-needed methods
/** apply solution to atomic quantities */
virtual void apply_to_atoms(PerAtomQuantity<double> * /* atomVelocities */){};
/** construct the RHS vector */
virtual void set_rhs(DENS_MAT & rhs);
private:
// DO NOT define this
ThermostatRescaleCombined();
};
/**
* @class KinetoThermostatRescale
* @brief Enforces constraints on atomic kinetic energy and velocity based on FE temperature and velocity
*/
class KinetoThermostatRescale : public KinetoThermostatShapeFunction {
public:
KinetoThermostatRescale(AtomicRegulator * kinetoThermostat,
int couplingMaxIterations);
virtual ~KinetoThermostatRescale();
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** compute boundary flux, requires thermostat input since it is part of the coupling scheme */
virtual void compute_boundary_flux(FIELDS & /* fields */)
{boundaryFlux_[TEMPERATURE] = 0.; boundaryFlux_[VELOCITY] = 0.;};
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
protected:
// methods
/** apply solution to atomic quantities */
virtual void apply_to_atoms(PerAtomQuantity<double> * atomVelocities);
/** creates the appropriate rescaling thermostat */
virtual ThermostatRescale * construct_rescale_thermostat();
// data
/** pointer to atom velocities */
FundamentalAtomQuantity * atomVelocities_;
/** clone of FE velocity field */
DENS_MAN & nodalVelocities_;
/** lambda coupling parameter for momentum */
DENS_MAN * lambdaMomentum_;
/** lambda coupling parameter for energy */
DENS_MAN * lambdaEnergy_;
/** pointer to rescaled velocity fluctuations */
PerAtomQuantity<double> * atomicFluctuatingVelocityRescaled_;
/** pointer to streaming velocity */
PerAtomQuantity<double> * atomicStreamingVelocity_;
/** rescaling thermostat */
ThermostatRescale * thermostat_;
/** velocity regulating kinetostat */
VelocityRescaleCombined * kinetostat_;
// workspace
DENS_MAT _lambdaEnergyOld_, _lambdaMomentumOld_, _diff_;
private:
// DO NOT define this
KinetoThermostatRescale();
};
/**
* @class ThermostatRescaleMixedKePeCombined
* @brief Enforces constraint on atomic kinetic energy based on FE temperature and velocity when the temperature is comprised of both KE and PE contributions
*/
class ThermostatRescaleMixedKePeCombined : public ThermostatRescaleMixedKePe {
public:
ThermostatRescaleMixedKePeCombined(AtomicRegulator * thermostat);
virtual ~ThermostatRescaleMixedKePeCombined() {};
/** pre-run initialization of method data */
virtual void initialize();
// deactivate un-needed methods
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double /* dt */){};
protected:
// data
/** RHS correct based on kinetostat */
DENS_MAN * kinetostatCorrection_;
// deactivate un-needed methods
/** apply solution to atomic quantities */
virtual void apply_to_atoms(PerAtomQuantity<double> * /* atomVelocities */){};
/** construct the RHS vector */
virtual void set_rhs(DENS_MAT & rhs);
private:
// DO NOT define this
ThermostatRescaleMixedKePeCombined();
};
/**
* @class KinetoThermostatRescaleMixedKePe
* @brief Enforces constraint on atomic kinetic energy based on FE temperature
* when the temperature is a mix of the KE and PE
*/
class KinetoThermostatRescaleMixedKePe : public KinetoThermostatRescale {
public:
KinetoThermostatRescaleMixedKePe(AtomicRegulator * kinetoThermostat,
int couplingMaxIterations);
virtual ~KinetoThermostatRescaleMixedKePe() {};
protected:
/** creates the appropriate rescaling thermostat */
virtual ThermostatRescale * construct_rescale_thermostat();
private:
// DO NOT define this
KinetoThermostatRescaleMixedKePe();
};
/**
* @class KinetoThermostatGlcFs
* @brief Class for regulation algorithms based on Gaussian least constraints (GLC) for fractional step (FS) algorithsm
*/
class KinetoThermostatGlcFs : public KinetoThermostatShapeFunction {
public:
KinetoThermostatGlcFs(AtomicRegulator * kinetoThermostat,
int couplingMaxIterations,
const std::string & regulatorPrefix = "");
virtual ~KinetoThermostatGlcFs() {};
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies thermostat to atoms in the predictor phase */
virtual void apply_pre_predictor(double dt);
/** applies thermostat to atoms in the pre-corrector phase */
virtual void apply_pre_corrector(double dt);
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
/* flag for performing the full lambda prediction calculation */
bool full_prediction();
protected:
// methods
/** apply forces to atoms */
virtual void apply_to_atoms(PerAtomQuantity<double> * atomicVelocity,
const DENS_MAN * nodalAtomicMomentum,
const DENS_MAN * nodalAtomicEnergy,
const DENS_MAT & lambdaForce,
DENS_MAT & nodalAtomicLambdaForce,
DENS_MAT & nodalAtomicLambdaPower,
double dt);
// USE BASE CLASSES FOR THESE
/** add contributions from regulator to FE momentum */
virtual void add_to_momentum(const DENS_MAT & nodalLambdaForce,
DENS_MAT & deltaForce,
double dt) = 0;
/** add contributions from regulator to FE energy */
virtual void add_to_energy(const DENS_MAT & nodalLambdaPower,
DENS_MAT & deltaEnergy,
double dt) = 0;
/* sets up and solves the linear system for lambda */
virtual void compute_lambda(double dt,
bool iterateSolution = true);
// member data
/** reference to AtC FE velocity */
DENS_MAN & velocity_;
/** reference to AtC FE temperature */
DENS_MAN & temperature_;
/** pointer to a time filtering object */
TimeFilter * timeFilter_;
/** force induced by lambda */
DENS_MAN * nodalAtomicLambdaForce_;
/** filtered lambda force */
DENS_MAN * lambdaForceFiltered_;
/** power induced by lambda */
DENS_MAN * nodalAtomicLambdaPower_;
/** filtered lambda power */
DENS_MAN * lambdaPowerFiltered_;
/** atomic force induced by lambda */
AtomicThermostatForce * atomRegulatorForces_;
/** atomic force induced by thermostat lambda */
AtomicThermostatForce * atomThermostatForces_;
/** pointer to atom masses */
FundamentalAtomQuantity * atomMasses_;
/** pointer to atom velocities */
FundamentalAtomQuantity * atomVelocities_;
/** hack to determine if first timestep has been passed */
bool isFirstTimestep_;
/** nodal atomic momentum */
DENS_MAN * nodalAtomicMomentum_;
/** nodal atomic energy */
DENS_MAN * nodalAtomicEnergy_;
/** local version of velocity used as predicted final veloctiy */
PerAtomQuantity<double> * atomPredictedVelocities_;
/** predicted nodal atomic momentum */
AtfShapeFunctionRestriction * nodalAtomicPredictedMomentum_;
/** predicted nodal atomic energy */
AtfShapeFunctionRestriction * nodalAtomicPredictedEnergy_;
/** pointer for force applied in first time step */
DENS_MAN * firstHalfAtomForces_;
/** FE momentum change from regulator during predictor phase in second half of timestep */
DENS_MAT deltaMomentum_;
/** FE temperature change from regulator during predictor phase in second half of timestep */
DENS_MAT deltaEnergy1_;
/** FE temperature change from regulator during corrector phase in second half of timestep */
DENS_MAT deltaEnergy2_;
/** fraction of timestep over which constraint is exactly enforced */
double dtFactor_;
// workspace
DENS_MAT _lambdaForceOutput_; // force applied by lambda in output format
DENS_MAT _lambdaPowerOutput_; // power applied by lambda in output format
DENS_MAT _velocityDelta_; // change in velocity when lambda force is applied
private:
// DO NOT define this
KinetoThermostatGlcFs();
};
/* #ifdef WIP_JAT */
/* /\** */
/* * @class ThermostatFlux */
/* * @brief Class enforces GLC on atomic forces based on FE power when using fractional step time integration */
/* *\/ */
/* class ThermostatFlux : public ThermostatGlcFs { */
/* public: */
/* ThermostatFlux(Thermostat * thermostat, */
/* const std::string & regulatorPrefix = ""); */
/* virtual ~ThermostatFlux() {}; */
/* /\** instantiate all needed data *\/ */
/* virtual void construct_transfers(); */
/* /\** pre-run initialization of method data *\/ */
/* virtual void initialize(); */
/* protected: */
/* /\** sets up appropriate rhs for thermostat equations *\/ */
/* virtual void set_thermostat_rhs(DENS_MAT & rhs, */
/* double dt); */
/* /\** add contributions from thermostat to FE energy *\/ */
/* virtual void add_to_energy(const DENS_MAT & nodalLambdaPower, */
/* DENS_MAT & deltaEnergy, */
/* double dt); */
/* /\** sets up the transfer which is the set of nodes being regulated *\/ */
/* virtual void construct_regulated_nodes(); */
/* // data */
/* /\** reference to ATC sources coming from prescribed data, AtC coupling, and extrinsic coupling *\/ */
/* DENS_MAN & heatSource_; */
/* private: */
/* // DO NOT define this */
/* ThermostatFlux(); */
/* }; */
/* /\** */
/* * @class ThermostatFixed */
/* * @brief Class enforces GLC on atomic forces based on FE power when using fractional step time integration */
/* *\/ */
/* class ThermostatFixed : public ThermostatGlcFs { */
/* public: */
/* ThermostatFixed(Thermostat * thermostat, */
/* const std::string & regulatorPrefix = ""); */
/* virtual ~ThermostatFixed() {}; */
/* /\** instantiate all needed data *\/ */
/* virtual void construct_transfers(); */
/* /\** pre-run initialization of method data *\/ */
/* virtual void initialize(); */
/* /\** applies thermostat to atoms in the predictor phase *\/ */
/* virtual void apply_pre_predictor(double dt); */
/* /\** applies thermostat to atoms in the pre-corrector phase *\/ */
/* virtual void apply_pre_corrector(double dt); */
/* /\** applies thermostat to atoms in the post-corrector phase *\/ */
/* virtual void apply_post_corrector(double dt); */
/* /\** compute boundary flux, requires thermostat input since it is part of the coupling scheme *\/ */
/* virtual void compute_boundary_flux(FIELDS & fields) */
/* {boundaryFlux_[TEMPERATURE] = 0.;}; */
/* /\** determine if local shape function matrices are needed *\/ */
/* virtual bool use_local_shape_functions() const {return atomicRegulator_->use_localized_lambda();}; */
/* protected: */
/* // methods */
/* /\** initialize data for tracking the change in nodal atomic temperature *\/ */
/* virtual void initialize_delta_nodal_atomic_energy(double dt); */
/* /\** compute the change in nodal atomic temperature *\/ */
/* virtual void compute_delta_nodal_atomic_energy(double dt); */
/* /\** sets up appropriate rhs for thermostat equations *\/ */
/* virtual void set_thermostat_rhs(DENS_MAT & rhs, */
/* double dt); */
/* /\** add contributions from thermostat to FE energy *\/ */
/* virtual void add_to_energy(const DENS_MAT & nodalLambdaPower, */
/* DENS_MAT & deltaEnergy, */
/* double dt); */
/* /\* sets up and solves the linear system for lambda *\/ */
/* virtual void compute_lambda(double dt, */
/* bool iterateSolution = true); */
/* /\** flag for halving the applied force to mitigate numerical errors *\/ */
/* bool halve_force(); */
/* /\** sets up the transfer which is the set of nodes being regulated *\/ */
/* virtual void construct_regulated_nodes(); */
/* // data */
/* /\** change in FE energy over a timestep *\/ */
/* DENS_MAT deltaFeEnergy_; */
/* /\** initial FE energy used to compute change *\/ */
/* DENS_MAT initialFeEnergy_; */
/* /\** change in restricted atomic FE energy over a timestep *\/ */
/* DENS_MAT deltaNodalAtomicEnergy_; */
/* /\** initial restricted atomic FE energy used to compute change *\/ */
/* DENS_MAT initialNodalAtomicEnergy_; */
/* /\** filtered nodal atomic energy *\/ */
/* DENS_MAN nodalAtomicEnergyFiltered_; */
/* /\** forces depending on predicted velocities for correct updating with fixed nodes *\/ */
/* AtomicThermostatForce * atomThermostatForcesPredVel_; */
/* /\** coefficient to account for effect of time filtering on rhs terms *\/ */
/* double filterCoefficient_; */
/* /\** kinetic energy multiplier in total energy (used for temperature expression) *\/ */
/* double keMultiplier_; */
/* // workspace */
/* DENS_MAT _tempNodalAtomicEnergyFiltered_; // stores filtered energy change in atoms for persistence during predictor */
/* private: */
/* // DO NOT define this */
/* ThermostatFixed(); */
/* }; */
/* /\** */
/* * @class ThermostatFluxFiltered */
/* * @brief Class enforces GLC on atomic forces based on FE power when using fractional step time integration */
/* * in conjunction with time filtering */
/* *\/ */
/* class ThermostatFluxFiltered : public ThermostatFlux { */
/* public: */
/* ThermostatFluxFiltered(Thermostat * thermostat, */
/* const std::string & regulatorPrefix = ""); */
/* virtual ~ThermostatFluxFiltered() {}; */
/* /\** pre-run initialization of method data *\/ */
/* virtual void initialize(); */
/* /\** applies thermostat to atoms in the post-corrector phase *\/ */
/* virtual void apply_post_corrector(double dt); */
/* /\** get data for output *\/ */
/* virtual void output(OUTPUT_LIST & outputData); */
/* protected: */
/* /\** sets up appropriate rhs for thermostat equations *\/ */
/* virtual void set_thermostat_rhs(DENS_MAT & rhs, */
/* double dt); */
/* /\** add contributions from thermostat to FE energy *\/ */
/* virtual void add_to_energy(const DENS_MAT & nodalLambdaPower, */
/* DENS_MAT & deltaEnergy, */
/* double dt); */
/* // data */
/* /\** heat source time history required to get instantaneous heat sources *\/ */
/* DENS_MAT heatSourceOld_; */
/* DENS_MAT instantHeatSource_; */
/* DENS_MAT timeStepSource_; */
/* private: */
/* // DO NOT define this */
/* ThermostatFluxFiltered(); */
/* }; */
/* /\** */
/* * @class ThermostatFixedFiltered */
/* * @brief Class for thermostatting using the temperature matching constraint and is compatible with */
/* the fractional step time-integration with time filtering */
/* *\/ */
/* class ThermostatFixedFiltered : public ThermostatFixed { */
/* public: */
/* ThermostatFixedFiltered(Thermostat * thermostat, */
/* const std::string & regulatorPrefix = ""); */
/* virtual ~ThermostatFixedFiltered() {}; */
/* /\** get data for output *\/ */
/* virtual void output(OUTPUT_LIST & outputData); */
/* protected: */
/* // methods */
/* /\** initialize data for tracking the change in nodal atomic temperature *\/ */
/* virtual void initialize_delta_nodal_atomic_energy(double dt); */
/* /\** compute the change in nodal atomic temperature *\/ */
/* virtual void compute_delta_nodal_atomic_energy(double dt); */
/* /\** sets up appropriate rhs for thermostat equations *\/ */
/* virtual void set_thermostat_rhs(DENS_MAT & rhs, */
/* double dt); */
/* /\** add contributions from thermostat to temperature for uncoupled nodes *\/ */
/* virtual void add_to_energy(const DENS_MAT & nodalLambdaPower, */
/* DENS_MAT & deltaEnergy, */
/* double dt); */
/* private: */
/* // DO NOT define this */
/* ThermostatFixedFiltered(); */
/* }; */
/* /\** */
/* * @class ThermostatFluxFixed */
/* * @brief Class for thermostatting using the temperature matching constraint one one set of nodes and the flux matching constraint on another */
/* *\/ */
/* class ThermostatFluxFixed : public RegulatorMethod { */
/* public: */
/* ThermostatFluxFixed(Thermostat * thermostat, */
/* bool constructThermostats = true); */
/* virtual ~ThermostatFluxFixed(); */
/* /\** instantiate all needed data *\/ */
/* virtual void construct_transfers(); */
/* /\** pre-run initialization of method data *\/ */
/* virtual void initialize(); */
/* /\** applies thermostat to atoms in the predictor phase *\/ */
/* virtual void apply_pre_predictor(double dt); */
/* /\** applies thermostat to atoms in the pre-corrector phase *\/ */
/* virtual void apply_pre_corrector(double dt); */
/* /\** applies thermostat to atoms in the post-corrector phase *\/ */
/* virtual void apply_post_corrector(double dt); */
/* /\** get data for output *\/ */
/* virtual void output(OUTPUT_LIST & outputData); */
/* /\** compute boundary flux, requires thermostat input since it is part of the coupling scheme *\/ */
/* virtual void compute_boundary_flux(FIELDS & fields) */
/* {thermostatBcs_->compute_boundary_flux(fields);}; */
/* protected: */
/* // data */
/* /\** thermostat for imposing the fluxes *\/ */
/* ThermostatFlux * thermostatFlux_; */
/* /\** thermostat for imposing fixed nodes *\/ */
/* ThermostatFixed * thermostatFixed_; */
/* /\** pointer to whichever thermostat should compute the flux, based on coupling method *\/ */
/* ThermostatGlcFs * thermostatBcs_; */
/* private: */
/* // DO NOT define this */
/* ThermostatFluxFixed(); */
/* }; */
/* /\** */
/* * @class ThermostatFluxFixedFiltered */
/* * @brief Class for thermostatting using the temperature matching constraint one one set of nodes and the flux matching constraint on another with time filtering */
/* *\/ */
/* class ThermostatFluxFixedFiltered : public ThermostatFluxFixed { */
/* public: */
/* ThermostatFluxFixedFiltered(Thermostat * thermostat); */
/* virtual ~ThermostatFluxFixedFiltered(){}; */
/* private: */
/* // DO NOT define this */
/* ThermostatFluxFixedFiltered(); */
/* }; */
/* #endif */
};
#endif
|