File: Kinetostat.h

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (884 lines) | stat: -rw-r--r-- 26,797 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
#ifndef KINETOSTAT_H
#define KINETOSTAT_H

#include "AtomicRegulator.h"
#include "PerAtomQuantityLibrary.h"
#include <map>
#include <set>
#include <utility>
#include <string>

namespace ATC {

  // forward declarations
  class FundamentalAtomQuantity;
  class AtfShapeFunctionRestriction;
  template <typename T>
    class ProtectedAtomQuantity;

  /**
   *  @class  Kinetostat
   *  @brief  Manager class for atom-continuum control of momentum and position
   */

  class Kinetostat : public AtomicRegulator {

  public:

    // constructor
    Kinetostat(ATC_Coupling *atc,
               const std::string & regulatorPrefix = "");

    // destructor
    virtual ~Kinetostat(){};

    /** parser/modifier */
    virtual bool modify(int narg, char **arg);

    /** instantiate up the desired method(s) */
    virtual void construct_methods();

    // data access, intended for method objects
    /** reset the nodal force to a prescribed value */
    virtual void reset_lambda_contribution(const DENS_MAT & target);

  private:

    // DO NOT define this
    Kinetostat();

  };

  /**
   *  @class  KinetostatShapeFunction
   *  @brief  Base class for implementation of kinetostat algorithms based on FE shape functions
   */

  class KinetostatShapeFunction : public RegulatorShapeFunction {

  public:

    KinetostatShapeFunction(AtomicRegulator *kinetostat,
                            const std::string & regulatorPrefix = "");

    virtual ~KinetostatShapeFunction(){};

    /** instantiate all needed data */
    virtual void construct_transfers();

  protected:

    // methods
    /** set weighting factor for in matrix Nhat^T * weights * Nhat */
    virtual void set_weights();

    // member data
    /** MD mass matrix */
    DIAG_MAN & mdMassMatrix_;
    /** pointer to a time filtering object */
    TimeFilter * timeFilter_;
    /** stress induced by lambda */
    DENS_MAN * nodalAtomicLambdaForce_;
    /** filtered lambda force */
    DENS_MAN * lambdaForceFiltered_;
    /** atomic force induced by lambda */
    ProtectedAtomQuantity<double> * atomKinetostatForce_;
    /** lambda prolonged to the atoms */
    ProtectedAtomQuantity<double> * atomLambda_;

    /** pointer to atom velocities */
    FundamentalAtomQuantity * atomVelocities_;
    /** pointer to atom velocities */
    FundamentalAtomQuantity * atomMasses_;

    // workspace
    DENS_MAT _nodalAtomicLambdaForceOut_; // matrix for output only

  private:

    // DO NOT define this
    KinetostatShapeFunction();

  };

  /**
   *  @class  GlcKinetostat
   *  @brief  Base class for implementation of kinetostat algorithms based on Gaussian least constraints (GLC)
   */

  class GlcKinetostat : public KinetostatShapeFunction {

  public:

    GlcKinetostat(AtomicRegulator *kinetostat);

    virtual ~GlcKinetostat(){};

    /** instantiate all needed data */
    virtual void construct_transfers();

    /** pre-run initialization of method data */
    virtual void initialize();

  protected:

    // methods
    /** apply forces to atoms */
    virtual void apply_to_atoms(PerAtomQuantity<double> * quantity,
                                const DENS_MAT & lambdaAtom,
                                double dt=0.);

    /** apply any required corrections for localized kinetostats */
    virtual void apply_localization_correction(const DENS_MAT & /* source */,
                                               DENS_MAT & /* nodalField */,
                                               double /* weight */){};
    virtual void apply_localization_correction(const DENS_MAT & /* source */,
                                               DENS_MAT & /* nodalField */){};

    // member data
    /** nodeset corresponding to Hoover coupling */
    std::set<std::pair<int,int> > hooverNodes_;


    /** pointer to atom positions */
    FundamentalAtomQuantity * atomPositions_;

  private:

    // DO NOT define this
    GlcKinetostat();

  };

  /**
   *  @class  DisplacementGlc
   *  @brief  Enforces GLC on atomic position based on FE displacement
   */

  class DisplacementGlc : public GlcKinetostat {

  public:

    DisplacementGlc(AtomicRegulator * kinetostat);

    virtual ~DisplacementGlc(){};

    /** instantiate all needed data */
    virtual void construct_transfers();

    /** pre-run initialization of method data */
    virtual void initialize();

    /** applies kinetostat to atoms */
    virtual void apply_post_predictor(double dt);

    /** get data for output */
    virtual void output(OUTPUT_LIST & outputData);

    /** determine if local shape function matrices are needed */
    virtual bool use_local_shape_functions() const {return (!atomicRegulator_->use_lumped_lambda_solve()) && atomicRegulator_->use_localized_lambda();};

  protected:

    // methods
    /** set weighting factor for in matrix Nhat^T * weights * Nhat */
    virtual void set_weights();

    /** does initial filtering operations before main computation */
    virtual void apply_pre_filtering(double dt);
    /** sets up and solves kinetostat equations */
    virtual void compute_kinetostat(double dt);
    /** sets up appropriate rhs for kinetostat equations */
    virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
    /** computes the nodal FE force applied by the kinetostat */
    virtual void compute_nodal_lambda_force(double dt);
    /** apply any required corrections for localized kinetostats */
    virtual void apply_localization_correction(const DENS_MAT & source,
                                               DENS_MAT & nodalField,
                                               double weight = 1.);

    // data
    /** restricted atomic displacements at the nodes */
    DENS_MAN * nodalAtomicMassWeightedDisplacement_;
    /** clone of FE displacement field */
    DENS_MAN & nodalDisplacements_;

  private:

    // DO NOT define this
    DisplacementGlc();

  };

  /**
   *  @class  DisplacementGlcFiltered
   *  @brief  Enforces GLC on time filtered atomic position based on FE displacement
   */

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class DisplacementGlcFiltered
  //--------------------------------------------------------
  //--------------------------------------------------------

  class DisplacementGlcFiltered : public DisplacementGlc {

  public:

    DisplacementGlcFiltered(AtomicRegulator * kinetostat);

    virtual ~DisplacementGlcFiltered(){};

    /** get data for output */
    virtual void output(OUTPUT_LIST & outputData);

  protected:

    // methods
    /** does initial filtering operations before main computation */
    virtual void apply_pre_filtering(double dt);
    /** sets up appropriate rhs for kinetostat equations */
    virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
    /** computes the nodal FE force applied by the kinetostat */
    virtual void compute_nodal_lambda_force(double dt);

    // data
    /** clone of FE nodal atomic displacement field */
    DENS_MAN & nodalAtomicDisplacements_;

  private:

    // DO NOT define this
    DisplacementGlcFiltered();

  };

  /**
   *  @class  VelocityGlc
   *  @brief  Enforces GLC on atomic velocity based on FE velocity
   */

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class VelocityGlc
  //--------------------------------------------------------
  //--------------------------------------------------------

  class VelocityGlc : public GlcKinetostat {

  public:

    VelocityGlc(AtomicRegulator * kinetostat);

    virtual ~VelocityGlc(){};

    /** instantiate all needed data */
    virtual void construct_transfers();

    /** pre-run initialization of method data */
    virtual void initialize();

    /** applies kinetostat to atoms */
    virtual void apply_mid_predictor(double dt);

    /** applies kinetostat to atoms */
    virtual void apply_post_corrector(double dt);

    /** get data for output */
    virtual void output(OUTPUT_LIST & outputData);

    /** determine if local shape function matrices are needed */
    virtual bool use_local_shape_functions() const {return (!atomicRegulator_->use_lumped_lambda_solve()) && atomicRegulator_->use_localized_lambda();};

  protected:

    // methods
    /** set weighting factor for in matrix Nhat^T * weights * Nhat */
    virtual void set_weights();

    /** does initial filtering operations before main computation */
    virtual void apply_pre_filtering(double dt);
    /** sets up and solves kinetostat equations */
    virtual void compute_kinetostat(double dt);
    /** applies kinetostat correction to atoms */
    virtual void apply_kinetostat(double dt);
    /** sets up appropriate rhs for kinetostat equations */
    virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
    /** computes the nodal FE force applied by the kinetostat */
    virtual void compute_nodal_lambda_force(double dt);
    /** apply any required corrections for localized kinetostats */
    virtual void apply_localization_correction(const DENS_MAT & source,
                                               DENS_MAT & nodalField,
                                               double weight = 1.);

    // data
    /** restricted atomic displacements at the nodes */
    DENS_MAN * nodalAtomicMomentum_;
    /** clone of FE velocity field */
    DENS_MAN & nodalVelocities_;

  private:

    // DO NOT define this
    VelocityGlc();

  };

  /**
   *  @class  VelocityGlcFiltered
   *  @brief  Enforces GLC on time filtered atomic velocity based on FE velocity
   */

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class VelocityGlcFiltered
  //--------------------------------------------------------
  //--------------------------------------------------------

  class VelocityGlcFiltered : public VelocityGlc {

  public:

    VelocityGlcFiltered(AtomicRegulator * kinetostat);

    virtual ~VelocityGlcFiltered(){};

    /** get data for output */
    virtual void output(OUTPUT_LIST & outputData);

  protected:

    // methods
    /** does initial filtering operations before main computation */
    virtual void apply_pre_filtering(double dt);
    /** sets up appropriate rhs for kinetostat equations */
    virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
    /** computes the nodal FE force applied by the kinetostat */
    virtual void compute_nodal_lambda_force(double dt);

    // data
    /** clone of FE nodal atomic velocity field */
    DENS_MAN & nodalAtomicVelocities_;

  private:

    // DO NOT define this
    VelocityGlcFiltered();

  };

  /**
   *  @class  StressFlux
   *  @brief  Enforces GLC on atomic forces based on FE stresses or accelerations
   */

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class StressFlux
  //--------------------------------------------------------
  //--------------------------------------------------------

  class StressFlux : public GlcKinetostat {

  public:

    StressFlux(AtomicRegulator * kinetostat);

    virtual ~StressFlux();

    /** instantiate all needed data */
    virtual void construct_transfers();

    /** applies kinetostat to atoms in the pre-predictor phase */
    virtual void apply_pre_predictor(double dt);

    /** applies kinetostat to atoms in the post-corrector phase */
    virtual void apply_post_corrector(double dt);

    /** compute boundary flux, requires thermostat input since it is part of the coupling scheme */
    virtual void compute_boundary_flux(FIELDS & fields);

    /** get data for output */
    virtual void output(OUTPUT_LIST & outputData);

    /** sets filtered ghost force to prescribed value */
    void reset_filtered_ghost_force(DENS_MAT & targetForce);
    /** returns reference to filtered ghost force */
    DENS_MAN & filtered_ghost_force() {return nodalGhostForceFiltered_;};

    /** determine if local shape function matrices are needed */
    virtual bool use_local_shape_functions() const {return ((!atomicRegulator_->use_lumped_lambda_solve()) && atomicRegulator_->use_localized_lambda());};

  protected:

    // data
    /** nodal force */
    DENS_MAN & nodalForce_;
    /** nodal force due to atoms */
    DENS_MAN * nodalAtomicForce_;
    /** nodal ghost force */
    AtfShapeFunctionRestriction * nodalGhostForce_;
    /** filtered ghost force */
    DENS_MAN nodalGhostForceFiltered_;
    /** reference to ATC sources coming from prescribed data, AtC coupling, and extrinsic coupling */
    DENS_MAN & momentumSource_;

    // methods
    /** does initial filtering operations before main computation */
    virtual void apply_pre_filtering(double dt);
    /** sets up and solves kinetostat equations */
    virtual void compute_kinetostat(double dt);
    /** sets up appropriate rhs for kinetostat equations */
    virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
    /** computes the nodal FE force applied by the kinetostat */
    virtual void compute_nodal_lambda_force(double dt);
    /** apply forces to atoms */
    virtual void apply_to_atoms(PerAtomQuantity<double> * atomVelocities,
                                const DENS_MAT & lambdaForce,
                                double dt);
    /** adds in finite element rhs contributions */
    virtual void add_to_rhs(FIELDS & rhs);

    // workspace
    DENS_MAT _deltaVelocity_; // change in velocity during time integration
  private:

    // DO NOT define this
    StressFlux();

  };

  /**
   *  @class  StressFluxGhost
   *  @brief  Enforces GLC on atomic forces based on FE stresses or accelerations, using
   *          the ghost forces to prescribe the FE boundary stress
   */

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class StressFluxGhost
  //--------------------------------------------------------
  //--------------------------------------------------------

  class StressFluxGhost : public StressFlux {

  public:

    StressFluxGhost(AtomicRegulator * kinetostat);

    virtual ~StressFluxGhost() {};

    /** instantiate all needed data */
    virtual void construct_transfers();

    /** compute boundary flux, requires kinetostat input since it is part of the coupling scheme */
    virtual void compute_boundary_flux(FIELDS & fields);

  protected:

    // methods
    /** sets up appropriate rhs for kinetostat equations */
    virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
    /** adds in finite element rhs contributions */
    virtual void add_to_rhs(FIELDS & rhs);

  private:

    // DO NOT define this
    StressFluxGhost();

  };

  /**
   *  @class  StressFluxFiltered
   *  @brief  Enforces GLC on time filtered atomic forces based on FE stresses or accelerations
   */

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class StressFluxFiltered
  //--------------------------------------------------------
  //--------------------------------------------------------

  class StressFluxFiltered : public StressFlux {

  public:

    StressFluxFiltered(AtomicRegulator * kinetostat);

    virtual ~StressFluxFiltered(){};

    /** adds in finite element rhs contributions */
    virtual void add_to_rhs(FIELDS & rhs);

    /** get data for output */
    virtual void output(OUTPUT_LIST & outputData);

  protected:

    // data
    DENS_MAN & nodalAtomicVelocity_;

    // methods
    /** sets up appropriate rhs for kinetostat equations */
    virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);

    /** apply forces to atoms */
    virtual void apply_to_atoms(PerAtomQuantity<double> * quantity,
                                const DENS_MAT & lambdaAtom,
                                double dt);

  private:

    // DO NOT define this
    StressFluxFiltered();

  };

  /**
   *  @class  KinetostatGlcFs
   *  @brief  Base class for implementation of kinetostat algorithms based on Gaussian least constraints (GLC)
   *          when fractional step time integration is used
   */

  class KinetostatGlcFs : public KinetostatShapeFunction {

  public:

    KinetostatGlcFs(AtomicRegulator *kinetostat,
                    const std::string & regulatorPrefix = "");

    virtual ~KinetostatGlcFs(){};

    /** instantiate all needed data */
    virtual void construct_transfers();

    /** pre-run initialization of method data */
    virtual void initialize();

    /** applies thermostat to atoms in the predictor phase */
    virtual void apply_pre_predictor(double dt);

    /** applies thermostat to atoms in the pre-corrector phase */
    virtual void apply_pre_corrector(double dt);

    /** applies thermostat to atoms in the post-corrector phase */
    virtual void apply_post_corrector(double dt);

    /** get data for output */
    virtual void output(OUTPUT_LIST & outputData);

    /* flag for performing the full lambda prediction calculation */
    bool full_prediction();

  protected:

    // methods
    /** determine mapping from all nodes to those to which the kinetostat applies */
    void compute_rhs_map();

    /** sets up appropriate rhs for kinetostat equations */
    virtual void set_kinetostat_rhs(DENS_MAT & rhs,
                                    double dt) = 0;

    /** apply forces to atoms */
    virtual void apply_to_atoms(PerAtomQuantity<double> * atomicVelocity,
                                const DENS_MAN * nodalAtomicEnergy,
                                const DENS_MAT & lambdaForce,
                                DENS_MAT & nodalAtomicLambdaPower,
                                double dt);

    /** add contributions from kinetostat to FE energy */
    virtual void add_to_momentum(const DENS_MAT & nodalLambdaForce,
                                 DENS_MAT & deltaMomemtum,
                                 double dt) = 0;

    /* sets up and solves the linear system for lambda */
    virtual void compute_lambda(double dt);

    // member data
    /** reference to AtC FE velocity */
    DENS_MAN & velocity_;

    /** nodal atomic momentum */
    DENS_MAN * nodalAtomicMomentum_;

    /** hack to determine if first timestep has been passed */
    bool isFirstTimestep_;

    /** local version of velocity used as predicted final veloctiy */
    PerAtomQuantity<double> * atomPredictedVelocities_;

    /** predicted nodal atomic momentum */
    AtfShapeFunctionRestriction * nodalAtomicPredictedMomentum_;

    /** FE momentum change from kinetostat forces */
    DENS_MAT deltaMomentum_;

    /** right-hand side data for thermostat equation */
    DENS_MAT rhs_;

    /** fraction of timestep over which constraint is exactly enforced */
    double dtFactor_;

    // workspace
    DENS_MAT _lambdaForceOutput_; // force applied by lambda in output format
    DENS_MAT _velocityDelta_; // change in velocity when lambda force is applied

  private:

    // DO NOT define this
    KinetostatGlcFs();

  };

  /**
   *  @class  KinetostatFlux
   *  @brief  Implementation of kinetostat algorithms based on Gaussian least constraints (GLC)
   *          which apply stresses when fractional step time integration is used
   */

  class KinetostatFlux : public KinetostatGlcFs {

  public:

    KinetostatFlux(AtomicRegulator *kinetostat,
                   const std::string & regulatorPrefix = "");

    virtual ~KinetostatFlux(){};

    /** instantiate all needed data */
    virtual void construct_transfers();

    /** pre-run initialization of method data */
    virtual void initialize();

    /** applies thermostat to atoms in the predictor phase */
    virtual void apply_pre_predictor(double dt);

    /** applies thermostat to atoms in the post-corrector phase */
    virtual void apply_post_corrector(double dt);

    /** enables resetting of filtered ghost force */
    void reset_filtered_ghost_force(DENS_MAT & target);

  protected:

    // methods
    /** sets up appropriate rhs for kinetostat equations */
    virtual void set_kinetostat_rhs(DENS_MAT & rhs,
                                    double dt);

    /** add contributions from kinetostat to FE energy */
    virtual void add_to_momentum(const DENS_MAT & nodalLambdaForce,
                                 DENS_MAT & deltaMomemtum,
                                 double dt);

    /** sets up the transfer which is the set of nodes being regulated */
    virtual void construct_regulated_nodes();

    // member data
    /** reference to ATC sources coming from prescribed data, AtC coupling, and extrinsic coupling */
    DENS_MAN & momentumSource_;

    /** force from ghost atoms restricted to nodes */
    DENS_MAN * nodalGhostForce_;

    /** filtered nodal ghost force */
    DENS_MAN * nodalGhostForceFiltered_;

  private:

    // DO NOT define this
    KinetostatFlux();

  };

  /**
   *  @class  KinetostatFluxGhost
   *  @brief  Implements ghost-atom boundary flux and other loads for fractional-step based kinetostats
   */

  class KinetostatFluxGhost : public KinetostatFlux {

  public:

    KinetostatFluxGhost(AtomicRegulator *kinetostat,
                        const std::string & regulatorPrefix = "");

    virtual ~KinetostatFluxGhost(){};

    /** instantiate all needed data */
    virtual void construct_transfers();

    /** compute boundary flux */
    virtual void compute_boundary_flux(FIELDS & fields);

  protected:

    /** sets up appropriate rhs for kinetostat equations */
    virtual void set_kinetostat_rhs(DENS_MAT & rhs,
                                    double dt);

    /** add contributions from kinetostat to FE energy */
    virtual void add_to_momentum(const DENS_MAT & nodalLambdaForce,
                                 DENS_MAT & deltaMomemtum,
                                 double dt);

  private:

    // DO NOT define this
    KinetostatFluxGhost();

  };

    /**
   *  @class  KinetostatFixed
   *  @brief  Implementation of kinetostat algorithms based on Gaussian least constraints (GLC)
   *          which perform Hoover coupling when fractional step time integration is used
   */

  class KinetostatFixed : public KinetostatGlcFs {

  public:

    KinetostatFixed(AtomicRegulator *kinetostat,
                    const std::string & regulatorPrefix = "");

    virtual ~KinetostatFixed(){};

    /** instantiate all needed data */
    virtual void construct_transfers();

    /** pre-run initialization of method data */
    virtual void initialize();

    /** applies thermostat to atoms in the predictor phase */
    virtual void apply_pre_predictor(double dt);

    /** applies thermostat to atoms in the pre-corrector phase */
    virtual void apply_pre_corrector(double dt);

    /** applies thermostat to atoms in the post-corrector phase */
    virtual void apply_post_corrector(double dt);

    /** compute boundary flux, requires thermostat input since it is part of the coupling scheme */
    virtual void compute_boundary_flux(FIELDS & /* fields */)
      {boundaryFlux_[VELOCITY] = 0.;};

    /** determine if local shape function matrices are needed */
    virtual bool use_local_shape_functions() const {return atomicRegulator_->use_localized_lambda();};

  protected:

    // methods
    /** initialize data for tracking the change in nodal atomic velocity */
    virtual void initialize_delta_nodal_atomic_momentum(double dt);

    /** compute the change in nodal atomic velocity */
    virtual void compute_delta_nodal_atomic_momentum(double dt);

    /** sets up appropriate rhs for kinetostat equations */
    virtual void set_kinetostat_rhs(DENS_MAT & rhs,
                                    double dt);

    /** add contributions from kinetostat to FE energy */
    virtual void add_to_momentum(const DENS_MAT & nodalLambdaForce,
                                 DENS_MAT & deltaMomemtum,
                                 double dt);

    /* sets up and solves the linear system for lambda */
    virtual void compute_lambda(double dt);

    /** flag for halving the applied force to mitigate numerical errors */
    bool halve_force();

    /** sets up the transfer which is the set of nodes being regulated */
    virtual void construct_regulated_nodes();

    // member data
    /** change in FE momentum over a timestep */
    DENS_MAT deltaFeMomentum_;

    /** initial FE momentum used to compute change */
    DENS_MAT initialFeMomentum_;

    /** change in restricted atomic FE momentum over a timestep */
    DENS_MAT deltaNodalAtomicMomentum_;

    /** initial restricted atomic FE momentum used to compute change */
    DENS_MAT initialNodalAtomicMomentum_;

    /** filtered nodal atomic momentum */
    DENS_MAN nodalAtomicMomentumFiltered_;

    /** coefficient to account for effect of time filtering on rhs terms */
    double filterCoefficient_;

    // workspace
    DENS_MAT _tempNodalAtomicMomentumFiltered_; // stores filtered momentum change in atoms for persistence during predictor

  private:

    // DO NOT define this
    KinetostatFixed();

  };

  /**
   *  @class  KinetostatFluxFixed
   *  @brief  Class for kinetostatting using the velocity matching constraint one one set of nodes and the flux matching constraint on another
   */

  class KinetostatFluxFixed : public RegulatorMethod {

  public:

    KinetostatFluxFixed(AtomicRegulator * kinetostat,
                        bool constructThermostats = true);

    virtual ~KinetostatFluxFixed();

    /** instantiate all needed data */
    virtual void construct_transfers();

    /** pre-run initialization of method data */
    virtual void initialize();

    /** applies thermostat to atoms in the predictor phase */
    virtual void apply_pre_predictor(double dt);

    /** applies thermostat to atoms in the pre-corrector phase */
    virtual void apply_pre_corrector(double dt);

    /** applies thermostat to atoms in the post-corrector phase */
    virtual void apply_post_corrector(double dt);

    /** get data for output */
    virtual void output(OUTPUT_LIST & outputData);

    /** compute boundary flux, requires kinetostat input since it is part of the coupling scheme */
    virtual void compute_boundary_flux(FIELDS & fields)
      {kinetostatBcs_->compute_boundary_flux(fields);};

  protected:

    // data
    /** kinetostat for imposing the fluxes */
    KinetostatFlux * kinetostatFlux_;

    /** kinetostat for imposing fixed nodes */
    KinetostatFixed * kinetostatFixed_;

    /** pointer to whichever kinetostat should compute the flux, based on coupling method */
    KinetostatGlcFs * kinetostatBcs_;

  private:

    // DO NOT define this
    KinetostatFluxFixed();
  };

}

#endif