1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
|
#ifndef KINETOSTAT_H
#define KINETOSTAT_H
#include "AtomicRegulator.h"
#include "PerAtomQuantityLibrary.h"
#include <map>
#include <set>
#include <utility>
#include <string>
namespace ATC {
// forward declarations
class FundamentalAtomQuantity;
class AtfShapeFunctionRestriction;
template <typename T>
class ProtectedAtomQuantity;
/**
* @class Kinetostat
* @brief Manager class for atom-continuum control of momentum and position
*/
class Kinetostat : public AtomicRegulator {
public:
// constructor
Kinetostat(ATC_Coupling *atc,
const std::string & regulatorPrefix = "");
// destructor
virtual ~Kinetostat(){};
/** parser/modifier */
virtual bool modify(int narg, char **arg);
/** instantiate up the desired method(s) */
virtual void construct_methods();
// data access, intended for method objects
/** reset the nodal force to a prescribed value */
virtual void reset_lambda_contribution(const DENS_MAT & target);
private:
// DO NOT define this
Kinetostat();
};
/**
* @class KinetostatShapeFunction
* @brief Base class for implementation of kinetostat algorithms based on FE shape functions
*/
class KinetostatShapeFunction : public RegulatorShapeFunction {
public:
KinetostatShapeFunction(AtomicRegulator *kinetostat,
const std::string & regulatorPrefix = "");
virtual ~KinetostatShapeFunction(){};
/** instantiate all needed data */
virtual void construct_transfers();
protected:
// methods
/** set weighting factor for in matrix Nhat^T * weights * Nhat */
virtual void set_weights();
// member data
/** MD mass matrix */
DIAG_MAN & mdMassMatrix_;
/** pointer to a time filtering object */
TimeFilter * timeFilter_;
/** stress induced by lambda */
DENS_MAN * nodalAtomicLambdaForce_;
/** filtered lambda force */
DENS_MAN * lambdaForceFiltered_;
/** atomic force induced by lambda */
ProtectedAtomQuantity<double> * atomKinetostatForce_;
/** lambda prolonged to the atoms */
ProtectedAtomQuantity<double> * atomLambda_;
/** pointer to atom velocities */
FundamentalAtomQuantity * atomVelocities_;
/** pointer to atom velocities */
FundamentalAtomQuantity * atomMasses_;
// workspace
DENS_MAT _nodalAtomicLambdaForceOut_; // matrix for output only
private:
// DO NOT define this
KinetostatShapeFunction();
};
/**
* @class GlcKinetostat
* @brief Base class for implementation of kinetostat algorithms based on Gaussian least constraints (GLC)
*/
class GlcKinetostat : public KinetostatShapeFunction {
public:
GlcKinetostat(AtomicRegulator *kinetostat);
virtual ~GlcKinetostat(){};
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
protected:
// methods
/** apply forces to atoms */
virtual void apply_to_atoms(PerAtomQuantity<double> * quantity,
const DENS_MAT & lambdaAtom,
double dt=0.);
/** apply any required corrections for localized kinetostats */
virtual void apply_localization_correction(const DENS_MAT & /* source */,
DENS_MAT & /* nodalField */,
double /* weight */){};
virtual void apply_localization_correction(const DENS_MAT & /* source */,
DENS_MAT & /* nodalField */){};
// member data
/** nodeset corresponding to Hoover coupling */
std::set<std::pair<int,int> > hooverNodes_;
/** pointer to atom positions */
FundamentalAtomQuantity * atomPositions_;
private:
// DO NOT define this
GlcKinetostat();
};
/**
* @class DisplacementGlc
* @brief Enforces GLC on atomic position based on FE displacement
*/
class DisplacementGlc : public GlcKinetostat {
public:
DisplacementGlc(AtomicRegulator * kinetostat);
virtual ~DisplacementGlc(){};
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies kinetostat to atoms */
virtual void apply_post_predictor(double dt);
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
/** determine if local shape function matrices are needed */
virtual bool use_local_shape_functions() const {return (!atomicRegulator_->use_lumped_lambda_solve()) && atomicRegulator_->use_localized_lambda();};
protected:
// methods
/** set weighting factor for in matrix Nhat^T * weights * Nhat */
virtual void set_weights();
/** does initial filtering operations before main computation */
virtual void apply_pre_filtering(double dt);
/** sets up and solves kinetostat equations */
virtual void compute_kinetostat(double dt);
/** sets up appropriate rhs for kinetostat equations */
virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
/** computes the nodal FE force applied by the kinetostat */
virtual void compute_nodal_lambda_force(double dt);
/** apply any required corrections for localized kinetostats */
virtual void apply_localization_correction(const DENS_MAT & source,
DENS_MAT & nodalField,
double weight = 1.);
// data
/** restricted atomic displacements at the nodes */
DENS_MAN * nodalAtomicMassWeightedDisplacement_;
/** clone of FE displacement field */
DENS_MAN & nodalDisplacements_;
private:
// DO NOT define this
DisplacementGlc();
};
/**
* @class DisplacementGlcFiltered
* @brief Enforces GLC on time filtered atomic position based on FE displacement
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class DisplacementGlcFiltered
//--------------------------------------------------------
//--------------------------------------------------------
class DisplacementGlcFiltered : public DisplacementGlc {
public:
DisplacementGlcFiltered(AtomicRegulator * kinetostat);
virtual ~DisplacementGlcFiltered(){};
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
protected:
// methods
/** does initial filtering operations before main computation */
virtual void apply_pre_filtering(double dt);
/** sets up appropriate rhs for kinetostat equations */
virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
/** computes the nodal FE force applied by the kinetostat */
virtual void compute_nodal_lambda_force(double dt);
// data
/** clone of FE nodal atomic displacement field */
DENS_MAN & nodalAtomicDisplacements_;
private:
// DO NOT define this
DisplacementGlcFiltered();
};
/**
* @class VelocityGlc
* @brief Enforces GLC on atomic velocity based on FE velocity
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class VelocityGlc
//--------------------------------------------------------
//--------------------------------------------------------
class VelocityGlc : public GlcKinetostat {
public:
VelocityGlc(AtomicRegulator * kinetostat);
virtual ~VelocityGlc(){};
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies kinetostat to atoms */
virtual void apply_mid_predictor(double dt);
/** applies kinetostat to atoms */
virtual void apply_post_corrector(double dt);
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
/** determine if local shape function matrices are needed */
virtual bool use_local_shape_functions() const {return (!atomicRegulator_->use_lumped_lambda_solve()) && atomicRegulator_->use_localized_lambda();};
protected:
// methods
/** set weighting factor for in matrix Nhat^T * weights * Nhat */
virtual void set_weights();
/** does initial filtering operations before main computation */
virtual void apply_pre_filtering(double dt);
/** sets up and solves kinetostat equations */
virtual void compute_kinetostat(double dt);
/** applies kinetostat correction to atoms */
virtual void apply_kinetostat(double dt);
/** sets up appropriate rhs for kinetostat equations */
virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
/** computes the nodal FE force applied by the kinetostat */
virtual void compute_nodal_lambda_force(double dt);
/** apply any required corrections for localized kinetostats */
virtual void apply_localization_correction(const DENS_MAT & source,
DENS_MAT & nodalField,
double weight = 1.);
// data
/** restricted atomic displacements at the nodes */
DENS_MAN * nodalAtomicMomentum_;
/** clone of FE velocity field */
DENS_MAN & nodalVelocities_;
private:
// DO NOT define this
VelocityGlc();
};
/**
* @class VelocityGlcFiltered
* @brief Enforces GLC on time filtered atomic velocity based on FE velocity
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class VelocityGlcFiltered
//--------------------------------------------------------
//--------------------------------------------------------
class VelocityGlcFiltered : public VelocityGlc {
public:
VelocityGlcFiltered(AtomicRegulator * kinetostat);
virtual ~VelocityGlcFiltered(){};
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
protected:
// methods
/** does initial filtering operations before main computation */
virtual void apply_pre_filtering(double dt);
/** sets up appropriate rhs for kinetostat equations */
virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
/** computes the nodal FE force applied by the kinetostat */
virtual void compute_nodal_lambda_force(double dt);
// data
/** clone of FE nodal atomic velocity field */
DENS_MAN & nodalAtomicVelocities_;
private:
// DO NOT define this
VelocityGlcFiltered();
};
/**
* @class StressFlux
* @brief Enforces GLC on atomic forces based on FE stresses or accelerations
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class StressFlux
//--------------------------------------------------------
//--------------------------------------------------------
class StressFlux : public GlcKinetostat {
public:
StressFlux(AtomicRegulator * kinetostat);
virtual ~StressFlux();
/** instantiate all needed data */
virtual void construct_transfers();
/** applies kinetostat to atoms in the pre-predictor phase */
virtual void apply_pre_predictor(double dt);
/** applies kinetostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** compute boundary flux, requires thermostat input since it is part of the coupling scheme */
virtual void compute_boundary_flux(FIELDS & fields);
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
/** sets filtered ghost force to prescribed value */
void reset_filtered_ghost_force(DENS_MAT & targetForce);
/** returns reference to filtered ghost force */
DENS_MAN & filtered_ghost_force() {return nodalGhostForceFiltered_;};
/** determine if local shape function matrices are needed */
virtual bool use_local_shape_functions() const {return ((!atomicRegulator_->use_lumped_lambda_solve()) && atomicRegulator_->use_localized_lambda());};
protected:
// data
/** nodal force */
DENS_MAN & nodalForce_;
/** nodal force due to atoms */
DENS_MAN * nodalAtomicForce_;
/** nodal ghost force */
AtfShapeFunctionRestriction * nodalGhostForce_;
/** filtered ghost force */
DENS_MAN nodalGhostForceFiltered_;
/** reference to ATC sources coming from prescribed data, AtC coupling, and extrinsic coupling */
DENS_MAN & momentumSource_;
// methods
/** does initial filtering operations before main computation */
virtual void apply_pre_filtering(double dt);
/** sets up and solves kinetostat equations */
virtual void compute_kinetostat(double dt);
/** sets up appropriate rhs for kinetostat equations */
virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
/** computes the nodal FE force applied by the kinetostat */
virtual void compute_nodal_lambda_force(double dt);
/** apply forces to atoms */
virtual void apply_to_atoms(PerAtomQuantity<double> * atomVelocities,
const DENS_MAT & lambdaForce,
double dt);
/** adds in finite element rhs contributions */
virtual void add_to_rhs(FIELDS & rhs);
// workspace
DENS_MAT _deltaVelocity_; // change in velocity during time integration
private:
// DO NOT define this
StressFlux();
};
/**
* @class StressFluxGhost
* @brief Enforces GLC on atomic forces based on FE stresses or accelerations, using
* the ghost forces to prescribe the FE boundary stress
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class StressFluxGhost
//--------------------------------------------------------
//--------------------------------------------------------
class StressFluxGhost : public StressFlux {
public:
StressFluxGhost(AtomicRegulator * kinetostat);
virtual ~StressFluxGhost() {};
/** instantiate all needed data */
virtual void construct_transfers();
/** compute boundary flux, requires kinetostat input since it is part of the coupling scheme */
virtual void compute_boundary_flux(FIELDS & fields);
protected:
// methods
/** sets up appropriate rhs for kinetostat equations */
virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
/** adds in finite element rhs contributions */
virtual void add_to_rhs(FIELDS & rhs);
private:
// DO NOT define this
StressFluxGhost();
};
/**
* @class StressFluxFiltered
* @brief Enforces GLC on time filtered atomic forces based on FE stresses or accelerations
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class StressFluxFiltered
//--------------------------------------------------------
//--------------------------------------------------------
class StressFluxFiltered : public StressFlux {
public:
StressFluxFiltered(AtomicRegulator * kinetostat);
virtual ~StressFluxFiltered(){};
/** adds in finite element rhs contributions */
virtual void add_to_rhs(FIELDS & rhs);
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
protected:
// data
DENS_MAN & nodalAtomicVelocity_;
// methods
/** sets up appropriate rhs for kinetostat equations */
virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
/** apply forces to atoms */
virtual void apply_to_atoms(PerAtomQuantity<double> * quantity,
const DENS_MAT & lambdaAtom,
double dt);
private:
// DO NOT define this
StressFluxFiltered();
};
/**
* @class KinetostatGlcFs
* @brief Base class for implementation of kinetostat algorithms based on Gaussian least constraints (GLC)
* when fractional step time integration is used
*/
class KinetostatGlcFs : public KinetostatShapeFunction {
public:
KinetostatGlcFs(AtomicRegulator *kinetostat,
const std::string & regulatorPrefix = "");
virtual ~KinetostatGlcFs(){};
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies thermostat to atoms in the predictor phase */
virtual void apply_pre_predictor(double dt);
/** applies thermostat to atoms in the pre-corrector phase */
virtual void apply_pre_corrector(double dt);
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
/* flag for performing the full lambda prediction calculation */
bool full_prediction();
protected:
// methods
/** determine mapping from all nodes to those to which the kinetostat applies */
void compute_rhs_map();
/** sets up appropriate rhs for kinetostat equations */
virtual void set_kinetostat_rhs(DENS_MAT & rhs,
double dt) = 0;
/** apply forces to atoms */
virtual void apply_to_atoms(PerAtomQuantity<double> * atomicVelocity,
const DENS_MAN * nodalAtomicEnergy,
const DENS_MAT & lambdaForce,
DENS_MAT & nodalAtomicLambdaPower,
double dt);
/** add contributions from kinetostat to FE energy */
virtual void add_to_momentum(const DENS_MAT & nodalLambdaForce,
DENS_MAT & deltaMomemtum,
double dt) = 0;
/* sets up and solves the linear system for lambda */
virtual void compute_lambda(double dt);
// member data
/** reference to AtC FE velocity */
DENS_MAN & velocity_;
/** nodal atomic momentum */
DENS_MAN * nodalAtomicMomentum_;
/** hack to determine if first timestep has been passed */
bool isFirstTimestep_;
/** local version of velocity used as predicted final veloctiy */
PerAtomQuantity<double> * atomPredictedVelocities_;
/** predicted nodal atomic momentum */
AtfShapeFunctionRestriction * nodalAtomicPredictedMomentum_;
/** FE momentum change from kinetostat forces */
DENS_MAT deltaMomentum_;
/** right-hand side data for thermostat equation */
DENS_MAT rhs_;
/** fraction of timestep over which constraint is exactly enforced */
double dtFactor_;
// workspace
DENS_MAT _lambdaForceOutput_; // force applied by lambda in output format
DENS_MAT _velocityDelta_; // change in velocity when lambda force is applied
private:
// DO NOT define this
KinetostatGlcFs();
};
/**
* @class KinetostatFlux
* @brief Implementation of kinetostat algorithms based on Gaussian least constraints (GLC)
* which apply stresses when fractional step time integration is used
*/
class KinetostatFlux : public KinetostatGlcFs {
public:
KinetostatFlux(AtomicRegulator *kinetostat,
const std::string & regulatorPrefix = "");
virtual ~KinetostatFlux(){};
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies thermostat to atoms in the predictor phase */
virtual void apply_pre_predictor(double dt);
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** enables resetting of filtered ghost force */
void reset_filtered_ghost_force(DENS_MAT & target);
protected:
// methods
/** sets up appropriate rhs for kinetostat equations */
virtual void set_kinetostat_rhs(DENS_MAT & rhs,
double dt);
/** add contributions from kinetostat to FE energy */
virtual void add_to_momentum(const DENS_MAT & nodalLambdaForce,
DENS_MAT & deltaMomemtum,
double dt);
/** sets up the transfer which is the set of nodes being regulated */
virtual void construct_regulated_nodes();
// member data
/** reference to ATC sources coming from prescribed data, AtC coupling, and extrinsic coupling */
DENS_MAN & momentumSource_;
/** force from ghost atoms restricted to nodes */
DENS_MAN * nodalGhostForce_;
/** filtered nodal ghost force */
DENS_MAN * nodalGhostForceFiltered_;
private:
// DO NOT define this
KinetostatFlux();
};
/**
* @class KinetostatFluxGhost
* @brief Implements ghost-atom boundary flux and other loads for fractional-step based kinetostats
*/
class KinetostatFluxGhost : public KinetostatFlux {
public:
KinetostatFluxGhost(AtomicRegulator *kinetostat,
const std::string & regulatorPrefix = "");
virtual ~KinetostatFluxGhost(){};
/** instantiate all needed data */
virtual void construct_transfers();
/** compute boundary flux */
virtual void compute_boundary_flux(FIELDS & fields);
protected:
/** sets up appropriate rhs for kinetostat equations */
virtual void set_kinetostat_rhs(DENS_MAT & rhs,
double dt);
/** add contributions from kinetostat to FE energy */
virtual void add_to_momentum(const DENS_MAT & nodalLambdaForce,
DENS_MAT & deltaMomemtum,
double dt);
private:
// DO NOT define this
KinetostatFluxGhost();
};
/**
* @class KinetostatFixed
* @brief Implementation of kinetostat algorithms based on Gaussian least constraints (GLC)
* which perform Hoover coupling when fractional step time integration is used
*/
class KinetostatFixed : public KinetostatGlcFs {
public:
KinetostatFixed(AtomicRegulator *kinetostat,
const std::string & regulatorPrefix = "");
virtual ~KinetostatFixed(){};
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies thermostat to atoms in the predictor phase */
virtual void apply_pre_predictor(double dt);
/** applies thermostat to atoms in the pre-corrector phase */
virtual void apply_pre_corrector(double dt);
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** compute boundary flux, requires thermostat input since it is part of the coupling scheme */
virtual void compute_boundary_flux(FIELDS & /* fields */)
{boundaryFlux_[VELOCITY] = 0.;};
/** determine if local shape function matrices are needed */
virtual bool use_local_shape_functions() const {return atomicRegulator_->use_localized_lambda();};
protected:
// methods
/** initialize data for tracking the change in nodal atomic velocity */
virtual void initialize_delta_nodal_atomic_momentum(double dt);
/** compute the change in nodal atomic velocity */
virtual void compute_delta_nodal_atomic_momentum(double dt);
/** sets up appropriate rhs for kinetostat equations */
virtual void set_kinetostat_rhs(DENS_MAT & rhs,
double dt);
/** add contributions from kinetostat to FE energy */
virtual void add_to_momentum(const DENS_MAT & nodalLambdaForce,
DENS_MAT & deltaMomemtum,
double dt);
/* sets up and solves the linear system for lambda */
virtual void compute_lambda(double dt);
/** flag for halving the applied force to mitigate numerical errors */
bool halve_force();
/** sets up the transfer which is the set of nodes being regulated */
virtual void construct_regulated_nodes();
// member data
/** change in FE momentum over a timestep */
DENS_MAT deltaFeMomentum_;
/** initial FE momentum used to compute change */
DENS_MAT initialFeMomentum_;
/** change in restricted atomic FE momentum over a timestep */
DENS_MAT deltaNodalAtomicMomentum_;
/** initial restricted atomic FE momentum used to compute change */
DENS_MAT initialNodalAtomicMomentum_;
/** filtered nodal atomic momentum */
DENS_MAN nodalAtomicMomentumFiltered_;
/** coefficient to account for effect of time filtering on rhs terms */
double filterCoefficient_;
// workspace
DENS_MAT _tempNodalAtomicMomentumFiltered_; // stores filtered momentum change in atoms for persistence during predictor
private:
// DO NOT define this
KinetostatFixed();
};
/**
* @class KinetostatFluxFixed
* @brief Class for kinetostatting using the velocity matching constraint one one set of nodes and the flux matching constraint on another
*/
class KinetostatFluxFixed : public RegulatorMethod {
public:
KinetostatFluxFixed(AtomicRegulator * kinetostat,
bool constructThermostats = true);
virtual ~KinetostatFluxFixed();
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies thermostat to atoms in the predictor phase */
virtual void apply_pre_predictor(double dt);
/** applies thermostat to atoms in the pre-corrector phase */
virtual void apply_pre_corrector(double dt);
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
/** compute boundary flux, requires kinetostat input since it is part of the coupling scheme */
virtual void compute_boundary_flux(FIELDS & fields)
{kinetostatBcs_->compute_boundary_flux(fields);};
protected:
// data
/** kinetostat for imposing the fluxes */
KinetostatFlux * kinetostatFlux_;
/** kinetostat for imposing fixed nodes */
KinetostatFixed * kinetostatFixed_;
/** pointer to whichever kinetostat should compute the flux, based on coupling method */
KinetostatGlcFs * kinetostatBcs_;
private:
// DO NOT define this
KinetostatFluxFixed();
};
}
#endif
|