1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
|
#ifndef MATRIX_H
#define MATRIX_H
#include "MatrixDef.h"
namespace ATC_matrix {
static const int myPrecision = 15;
/**
* @class Matrix
* @brief Base class for linear algebra subsystem
*/
template<typename T>
class Matrix
{
protected:
Matrix(const Matrix &c);
public:
Matrix() {}
virtual ~Matrix() {}
//* stream output functions
void print(std::ostream &o, int p=myPrecision) const { o << this->to_string(p); }
void print(std::ostream &o, const std::string &name, int p=myPrecision) const;
friend std::ostream& operator<<(std::ostream &o, const Matrix<T> &m){m.print(o); return o;}
void print() const;
virtual void print(const std::string &name, int p = myPrecision) const;
virtual std::string to_string(int p) const;
virtual std::string to_string() const { return to_string(myPrecision); }
// element by element operations
DenseMatrix<T> operator/(const Matrix<T>& B) const;
DenseMatrix<T> pow(int n) const;
DenseMatrix<T> pow(double n) const;
// functions that return a copy
DenseMatrix<T> transpose() const;
void row_partition(const std::set<int> & rowsIn, std::set<int> & rows, std::set<int> & colsC,
DenseMatrix<T> & A1, DenseMatrix<T> & A2, bool complement=true) const;
std::set<int> row_partition(const std::set<int> & rows,
DenseMatrix<T> & A1, DenseMatrix<T> & A2) const;
void map(const std::set<int>& rows, const std::set<int>& cols, DenseMatrix<T> & A) const;
void insert(const std::set<int>& rows, const std::set<int>& cols, const DenseMatrix<T> & A);
void assemble(const std::set<int>& rows, const std::set<int>& cols, const DenseMatrix<T> & A);
// matrix to scalar functions
T sum() const;
T stdev() const;
T max() const;
T min() const;
T maxabs() const;
T minabs() const;
T norm() const;
T norm_sq() const;
T mean() const;
T dot(const Matrix<T> &r) const;
T trace() const;
// row and column operations
T row_sum (INDEX i=0) const { return row(*this,i).sum(); }
T row_mean (INDEX i=0) const { return row(*this,i).mean(); }
T row_norm (INDEX i=0) const { return row(*this,i).norm(); }
T row_min (INDEX i=0) const { return row(*this,i).min(); }
T row_max (INDEX i=0) const { return row(*this,i).max(); }
T row_stdev(INDEX i=0) const { return row(*this,i).stdev(); }
T col_sum (INDEX i=0) const { return column(*this,i).sum(); }
T col_mean (INDEX i=0) const { return column(*this,i).mean(); }
T col_norm (INDEX i=0) const { return column(*this,i).norm(); }
T col_min (INDEX i=0) const { return column(*this,i).min(); }
T col_max (INDEX i=0) const { return column(*this,i).max(); }
T col_stdev(INDEX i=0) const { return column(*this,i).stdev(); }
// pure virtual functions (required to implement these) ---------------------
//* reference index operator
virtual T& operator()(INDEX i, INDEX j)=0;
//* value index operator
virtual T operator()(INDEX i, INDEX j)const=0;
//* value flat index operator
virtual T& operator [](INDEX i)=0;
//* reference flat index operator
virtual T operator [](INDEX i) const=0;
//* returns the # of rows
virtual INDEX nRows() const=0;
//* returns the # of columns
virtual INDEX nCols() const=0;
//* returns a pointer to the data (dangerous)
virtual T * ptr() const=0;
//* resizes the matrix, copy what fits default to OFF
virtual void resize(INDEX nRows, INDEX nCols=1, bool copy=false)=0;
//* resizes the matrix, zero it out default to ON
virtual void reset(INDEX nRows, INDEX nCols=1, bool zero=true)=0;
//* resizes and copies data
virtual void copy(const T * ptr, INDEX nRows, INDEX nCols=1)=0;
//* create restart file
virtual void write_restart(FILE *f) const=0;
//* writes a matlab command to recreate this in a variable named s
virtual void matlab(std::ostream &o, const std::string &s="M") const;
//* writes a mathematica command to recreate this in a variable named s
virtual void mathematica(std::ostream &o, const std::string &s="M") const;
// output to matlab, with variable name s
void matlab(const std::string &s="M") const;
// output to mathematica, with variable name s
void mathematica(const std::string &s="M") const;
Matrix<T>& operator+=(const Matrix &r);
Matrix<T>& operator-=(const Matrix &r);
Matrix<T>& operator*=(const Matrix<T>& R);
Matrix<T>& operator/=(const Matrix<T>& R);
Matrix<T>& operator+=(const T v);
Matrix<T>& operator-=(const T v);
Matrix<T>& operator*=(const T v);
Matrix<T>& operator/=(T v);
Matrix<T>& divide_zero_safe(const Matrix<T>& B);
Matrix<T>& operator=(const T &v);
Matrix<T>& operator=(const Matrix<T> &c);
virtual void set_all_elements_to(const T &v);
//* adds a matrix scaled by factor s to this one.
void add_scaled(const Matrix<T> &A, const T& s);
//* sets all elements to zero
Matrix& zero();
//* sets matrix to the identity
Matrix& identity(int nrows=0);
//* returns the total number of elements
virtual INDEX size() const;
//* returns true if (i,j) is within the range of the matrix
bool in_range(INDEX i, INDEX j) const;
//* returns true if the matrix size is rs x cs
bool is_size(INDEX rs, INDEX cs) const;
//* returns true if the matrix is square and not empty
bool is_square() const;
//* returns true if Matrix, m, is the same size as this
bool same_size(const Matrix &m) const;
//* returns true if Matrix a and Matrix b are the same size
static bool same_size(const Matrix<T> &a, const Matrix<T> &b);
//* returns true if Matrix a rows are equal to Matrix b cols
static bool cols_equals_rows(const Matrix<T> &a, const Matrix<T> &b);
//* checks if memory is contiguous, only can be false for clone vector
virtual bool memory_contiguous() const { return true; }
//* checks if all values are within the prescribed range
virtual bool check_range(T min, T max) const;
protected:
virtual void _set_equal(const Matrix<T> &r) = 0;
};
//* Matrix operations
//@{
//* Sets C as b*C + a*A[transpose?]*B[transpose?]
template<typename T>
void MultAB(const Matrix<T> &A, const Matrix<T> &B, DenseMatrix<T> &C,
bool At=0, bool Bt=0, T a=1, T b=0);
//* performs a matrix-vector multiply
template<typename T>
void MultMv(const Matrix<T> &A, const Vector<T> &v, DenseVector<T> &c,
const bool At, T a, T b);
// returns the inverse of a double precision matrix
DenseMatrix<double> inv(const Matrix<double>& A);
// returns the eigensystem of a pair of double precision matrices
DenseMatrix<double> eigensystem(const Matrix<double>& A, const Matrix<double>& B, DenseMatrix<double> & eVals, bool normalize = true);
// returns the polar decomposition of a double precision matrix
DenseMatrix<double> polar_decomposition(const Matrix<double>& A, DenseMatrix<double> & rotation, DenseMatrix<double> & stretch, bool leftRotation = true);
//* returns the trace of a matrix
template<typename T>
T trace(const Matrix<T>& A) { return A.trace(); }
//* computes the determinant of a square matrix
double det(const Matrix<double>& A);
//* Returns the maximum eigenvalue of a matrix.
double max_eigenvalue(const Matrix<double>& A);
//@}
//-----------------------------------------------------------------------------
// computes the sum of the difference squared of each element.
//-----------------------------------------------------------------------------
template<typename T>
double sum_difference_squared(const Matrix<T>& A, const Matrix<T> &B)
{
SSCK(A, B, "sum_difference_squared");
double v=0.0;
for (INDEX i=0; i<A.size(); i++) {
double d = A[i]-B[i];
v += d*d;
}
return v;
}
//-----------------------------------------------------------------------------
//* Operator for Matrix-matrix product
//-----------------------------------------------------------------------------
template<typename T>
DenseMatrix<T> operator*(const Matrix<T> &A, const Matrix<T> &B)
{
DenseMatrix<T> C(0,0,false);
MultAB(A,B,C);
return C;
}
//-----------------------------------------------------------------------------
//* Multiply a Matrix by a scalar
//-----------------------------------------------------------------------------
template<typename T>
DenseMatrix<T> operator*(const Matrix<T> &M, const T s)
{
DenseMatrix<T> R(M);
return R*=s;
}
//-----------------------------------------------------------------------------
//* Multiply a Matrix by a scalar
template<typename T>
DenseMatrix<T> operator*(const T s, const Matrix<T> &M)
{
DenseMatrix<T> R(M);
return R*=s;
}
//-----------------------------------------------------------------------------
//* inverse scaling operator - must always create memory
template<typename T>
DenseMatrix<T> operator/(const Matrix<T> &M, const T s)
{
DenseMatrix<T> R(M);
return R*=(1.0/s); // for integer types this may be worthless
}
//-----------------------------------------------------------------------------
//* Operator for Matrix-matrix sum
template<typename T>
DenseMatrix<T> operator+(const Matrix<T> &A, const Matrix<T> &B)
{
DenseMatrix<T> C(A);
return C+=B;
}
//-----------------------------------------------------------------------------
//* Operator for Matrix-matrix subtraction
template<typename T>
DenseMatrix<T> operator-(const Matrix<T> &A, const Matrix<T> &B)
{
DenseMatrix<T> C(A);
return C-=B;
}
/******************************************************************************
* Template definitions for class Matrix
******************************************************************************/
//-----------------------------------------------------------------------------
//* performs a matrix-matrix multiply with general type implementation
template<typename T>
void MultAB(const Matrix<T> &A, const Matrix<T> &B, DenseMatrix<T> &C,
const bool At, const bool Bt, T /* a */, T b)
{
const INDEX sA[2] = {A.nRows(), A.nCols()}; // m is sA[At] k is sA[!At]
const INDEX sB[2] = {B.nRows(), B.nCols()}; // k is sB[Bt] n is sB[!Bt]
const INDEX M=sA[At], K=sB[Bt], N=sB[!Bt]; // M is the number of rows in A or Atrans (sA[At]),
// K is the number of rows in B or Btrans (sB[Bt], sA[!At]),
// N is the number of columns in B or Btrans (sB[!Bt]).
GCK(A, B, sA[!At]!=K, "MultAB<T> shared index not equal size");
if (!C.is_size(M,N))
{
C.resize(M,N); // set size of C
C.zero();
}
else C *= b; // Zero C
for (INDEX p=0; p<M; p++) {
INDEX p_times_At = p*At;
INDEX p_times_notAt = p*!At;
for (INDEX q=0; q<N; q++) {
INDEX q_times_Bt = q*Bt;
INDEX q_times_notBt = q*!Bt;
for (INDEX r=0; r<K; r++) {
INDEX ai = p_times_notAt+r*At;
INDEX aj = p_times_At+r*!At;
INDEX bi = r*!Bt+q_times_Bt;
INDEX bj = r*Bt+q_times_notBt;
T a_entry = A(ai, aj);
T b_entry = B(bi, bj);
T mult = a_entry * b_entry;
C(p,q) += mult;
}
}
}
}
//-----------------------------------------------------------------------------
//* output operator
template<typename T>
std::string Matrix<T>::to_string(int p) const
{
std::string s;
for (INDEX i=0; i<nRows(); i++) {
if (i) s += '\n';
for (INDEX j=0; j<nCols(); j++) {
//if (j) s+= '\t';
s += ATC_Utility::to_string((*this)(i,j),p)+" ";
}
}
return s;
}
//-----------------------------------------------------------------------------
//* output operator that wraps the matrix in a nice labeled box
template<typename T>
void Matrix<T>::print(std::ostream &o, const std::string &name, int p) const
{
o << "------- Begin "<<name<<" -----------------\n";
this->print(o,p);
o << "\n------- End "<<name<<" -------------------\n";
}
//-----------------------------------------------------------------------------
//* print operator, use cout by default
template<typename T>
void Matrix<T>::print() const
{
print(std::cout);
}
//-----------------------------------------------------------------------------
//* named print operator, use cout by default
template<typename T>
void Matrix<T>::print(const std::string &name, int p) const
{
print(std::cout, name, p);
}
//-----------------------------------------------------------------------------
//* element by element division
template<typename T>
DenseMatrix<T> Matrix<T>::operator/ (const Matrix<T>& B) const
{
SSCK(*this, B, "Matrix<T>::Operator/");
DenseMatrix<T> R(*this);
R /= B;
return R;
}
//-----------------------------------------------------------------------------
//* element-wise raise to a power
template<typename T>
DenseMatrix<T> Matrix<T>::pow(int n) const
{
DenseMatrix<T> R(*this);
int sz=this->size(); for(INDEX i=0; i<sz; i++)
{
double val = R[i];
for (int k=1; k<n; k++) val *= R[i];
for (int k=n; k<1; k++) val /= R[i];
R[i] = val;
}
return R;
}
//-----------------------------------------------------------------------------
//* element-wise raise to a power
template<typename T>
DenseMatrix<T> Matrix<T>::pow(double n) const
{
DenseMatrix<T> R(*this);
int sz=this->size(); for(INDEX i=0; i<sz; i++)
{
double val = R[i];
R[i] = std::pow(val,n);
}
return R;
}
//-----------------------------------------------------------------------------
//* returns the transpose of this matrix (makes a copy)
template <typename T>
DenseMatrix<T> Matrix<T>::transpose() const
{
DenseMatrix<T> t(this->nCols(), this->nRows());
int szi = this->nRows();
int szj = this->nCols();
for (INDEX i = 0; i < szi; i++)
for (INDEX j = 0; j < szj; j++)
t(j,i) = (*this)(i,j);
return t;
}
//-----------------------------------------------------------------------------
//* returns the transpose of a matrix (makes a copy)
template <typename T>
DenseMatrix<T> transpose(const Matrix<T> &A)
{
return A.transpose();
}
//-----------------------------------------------------------------------------
//* Returns the sum of all matrix elements
template<typename T>
T Matrix<T>::sum() const
{
if (!size()) return T(0);
T v = (*this)[0];
for (INDEX i=1; i<this->size(); i++) v += (*this)[i];
return v;
}
//-----------------------------------------------------------------------------
//* Returns the standard deviation of the matrix
template<typename T>
T Matrix<T>::stdev() const
{
GCHK(this->size()<2, "Matrix::stdev() size must be > 1");
T mean = this->mean();
T diff = (*this)[0]-mean;
T stdev = diff*diff;
for (INDEX i=1; i<this->size(); i++)
{
diff = (*this)[i]-mean;
stdev += diff*diff;
}
return sqrt(stdev/T(this->size()-1));
}
//-----------------------------------------------------------------------------
//* Returns the maximum of the matrix
template<typename T>
T Matrix<T>::max() const
{
GCHK(!this->size(), "Matrix::max() size must be > 0");
T v = (*this)[0];
for (INDEX i=1; i<this->size(); i++) v = std::max(v, (*this)[i]);
return v;
}
//-----------------------------------------------------------------------------
//* Returns the minimum of the matrix
template<typename T>
T Matrix<T>::min() const
{
GCHK(!this->size(), "Matrix::min() size must be > 0");
T v = (*this)[0];
for (INDEX i=1; i<this->size(); i++) v = std::min(v, (*this)[i]);
return v;
}
//-----------------------------------------------------------------------------
//* Returns the maximum absolute value of the matrix
template<typename T>
T Matrix<T>::maxabs() const
{
GCHK(!this->size(), "Matrix::maxabs() size must be > 0");
T v = (*this)[0];
for (INDEX i=1; i<this->size(); i++) v = ATC_Utility::max_abs(v, (*this)[i]);
return v;
}
//-----------------------------------------------------------------------------
//* Returns the minimum absoute value of the matrix
template<typename T>
T Matrix<T>::minabs() const
{
GCHK(!this->size(), "Matrix::minabs() size must be > 0");
T v = (*this)[0];
for (INDEX i=1; i<this->size(); i++) v = ATC_Utility::min_abs(v, (*this)[i]);
return v;
}
//-----------------------------------------------------------------------------
//* returns the L2 norm of the matrix
template<typename T>
T Matrix<T>::norm() const
{
GCHK(!this->size(), "Matrix::norm() size must be > 0");
return sqrt(dot(*this));
}
//-----------------------------------------------------------------------------
//* returns the L2 norm of the matrix
template<typename T>
T Matrix<T>::norm_sq() const
{
GCHK(!this->size(), "Matrix::norm() size must be > 0");
return dot(*this);
}
//-----------------------------------------------------------------------------
//* returns the average of the matrix
template<typename T>
T Matrix<T>::mean() const
{
GCHK(!this->size(), "Matrix::mean() size must be > 0");
return sum()/T(this->size());
}
//-----------------------------------------------------------------------------
//* Returns the dot product of two vectors
template<typename T>
T Matrix<T>::dot(const Matrix<T>& r) const
{
SSCK(*this, r, "Matrix<T>::dot");
if (!this->size()) return T(0);
T v = r[0]*(*this)[0];
for (INDEX i=1; i<this->size(); i++) v += r[i]*(*this)[i];
return v;
}
//-----------------------------------------------------------------------------
// returns the sum of the matrix diagonal
//-----------------------------------------------------------------------------
template<typename T>
T Matrix<T>::trace() const
{
const INDEX N = std::min(nRows(),nCols());
if (!N) return T(0);
T r = (*this)(0,0);
for (INDEX i=0; i<N; i++)
r += (*this)(i,i);
return r;
}
//-----------------------------------------------------------------------------
//* Adds a matrix to this one
template<typename T>
Matrix<T>& Matrix<T>::operator+=(const Matrix &r)
{
SSCK(*this, r, "operator+= or operator +");
int sz=this->size(); for(INDEX i=0; i<sz; i++) (*this)[i]+=r[i];
return *this;
}
//-----------------------------------------------------------------------------
// subtracts a matrix from this one
//-----------------------------------------------------------------------------
template<typename T>
Matrix<T>& Matrix<T>::operator-=(const Matrix &r)
{
SSCK(*this, r, "operator-= or operator -");
int sz=this->size(); for(INDEX i=0; i<sz; i++) (*this)[i]-=r[i];
return *this;
}
//-----------------------------------------------------------------------------
// multiplies each element in this by the corresponding element in R
//-----------------------------------------------------------------------------
template<typename T>
Matrix<T>& Matrix<T>::operator*=(const Matrix<T>& R)
{
if ((R.nCols()==1) && (this->nCols()>1)) { // multiply every entry in a row by the same value
int szi = this->nRows();
int szj = this->nCols();
for (INDEX i = 0; i < szi; i++)
for (INDEX j = 0; j < szj; j++)
{
(*this)(i,j) *= R[i];
}
}
else if (((R.nCols()==R.size()) && (R.nRows()==R.size())) && !((this->nCols()==this->size()) && (this->nRows()==this->size()))){
int szi = this->nRows();
int szj = this->nCols();
for (INDEX i = 0; i < szi; i++)
for (INDEX j = 0; j < szj; j++)
{
(*this)(i,j) *= R[i];
}
}
else { // multiply each entry by a different value
int sz = this->size();
for (INDEX i = 0; i < sz; i++)
{
(*this)[i] *= R[i];
}
}
return *this;
}
//-----------------------------------------------------------------------------
// divides each element in this by the corresponding element in R
//-----------------------------------------------------------------------------
template<typename T>
Matrix<T>& Matrix<T>::operator/=(const Matrix<T>& R)
{
if ((R.nCols()==1) && (this->nCols()>1)) { // divide every entry in a row by the same value
int szi = this->nRows();
int szj = this->nCols();
for (INDEX i = 0; i < szi; i++)
for (INDEX j = 0; j < szj; j++)
{
(*this)(i,j) /= R[i];
}
}
else { // divide each entry by a different value
SSCK(*this, R, "operator/= or operator/");
int sz = this->size();
for(INDEX i = 0; i < sz; i++)
{
GCHK(fabs(R[i])==0,"Operator/: division by zero");
(*this)[i] /= R[i];
}
}
return *this;
}
//-----------------------------------------------------------------------------
// divides each element in this by the corresponding element in R unless zero
//-----------------------------------------------------------------------------
template<typename T>
Matrix<T>& Matrix<T>::divide_zero_safe(const Matrix<T>& R)
{
if ((R.nCols()==1) && (this->nCols()>1)) { // divide every entry in a row by the same value
int szi = this->nRows();
int szj = this->nCols();
for (INDEX i = 0; i < szi; i++)
for (INDEX j = 0; j < szj; j++)
{
if(fabs(R[i])!=0) {
(*this)(i,j) /= R[i];
}
}
}
else { // divide each entry by a different value
SSCK(*this, R, "operator/= or operator/");
int sz = this->size();
for(INDEX i = 0; i < sz; i++)
{
if(fabs(R[i])!=0) {
(*this)[i] /= R[i];
}
}
}
return *this;
}
//-----------------------------------------------------------------------------
// scales this matrix by a constant
//-----------------------------------------------------------------------------
template<typename T>
Matrix<T>& Matrix<T>::operator*=(const T v)
{
int sz=this->size(); for(INDEX i=0; i<sz; i++) (*this)[i]*=v;
return *this;
}
//-----------------------------------------------------------------------------
// adds a constant to this matrix
//-----------------------------------------------------------------------------
template<typename T>
Matrix<T>& Matrix<T>::operator+=(const T v)
{
int sz=this->size(); for(INDEX i=0; i<sz; i++) (*this)[i]+=v;
return *this;
}
//-----------------------------------------------------------------------------
// subtracts a constant to this matrix
//-----------------------------------------------------------------------------
template<typename T>
Matrix<T>& Matrix<T>::operator-=(const T v)
{
int sz=this->size(); for(INDEX i=0; i<sz; i++) (*this)[i]-=v;
return *this;
}
//-----------------------------------------------------------------------------
//* scales this matrix by the inverse of a constant
template<typename T>
Matrix<T>& Matrix<T>::operator/=(T v)
{
return (*this)*=(1.0/v);
}
//----------------------------------------------------------------------------
// Assigns one matrix to another
//----------------------------------------------------------------------------
template<typename T>
Matrix<T>& Matrix<T>::operator=(const Matrix<T> &r)
{
this->_set_equal(r);
return *this;
}
//-----------------------------------------------------------------------------
//* sets all elements to a constant
template<typename T>
inline Matrix<T>& Matrix<T>::operator=(const T &v)
{
set_all_elements_to(v);
return *this;
}
//-----------------------------------------------------------------------------
//* sets all elements to a constant
template<typename T>
void Matrix<T>::set_all_elements_to(const T &v)
{
int sz=this->size(); for(INDEX i=0; i<sz; i++) (*this)[i] = v;
}
//----------------------------------------------------------------------------
// adds a matrix scaled by factor s to this one.
//----------------------------------------------------------------------------
template <typename T>
void Matrix<T>::add_scaled(const Matrix<T> &A, const T& s)
{
SSCK(A, *this, "Matrix::add_scaled");
int sz=this->size(); for(INDEX i=0; i<sz; i++) (*this)[i] += A[i]*s;
}
//-----------------------------------------------------------------------------
//* writes a matlab command to the console
template<typename T>
void Matrix<T>::matlab(const std::string &s) const
{
this->matlab(std::cout, s);
}
//-----------------------------------------------------------------------------
//* Writes a matlab script defining the vector to the stream
template<typename T>
void Matrix<T>::matlab(std::ostream &o, const std::string &s) const
{
o << s <<"=zeros(" << nRows() << ","<<nCols()<<");\n";
int szi = this->nRows();
int szj = this->nCols();
for (INDEX i = 0; i < szi; i++)
for (INDEX j = 0; j < szj; j++)
o << s << "("<<i+1<<","<<j+1<<")=" << (*this)(i,j) << ";\n";
}
//-----------------------------------------------------------------------------
//* writes a mathematica command to the console
template<typename T>
void Matrix<T>::mathematica(const std::string &s) const
{
this->mathematica(std::cout, s);
}
//-----------------------------------------------------------------------------
//* Writes a mathematica script defining the vector to the stream
template<typename T>
void Matrix<T>::mathematica(std::ostream &o, const std::string &s) const
{
o << s <<" = { \n";
o.precision(15);
o << std::fixed;
for(INDEX i=0; i< nRows(); i++) {
o <<" { " << (*this)(i,0);
for(INDEX j=1; j< nCols(); j++) o << ", " << (*this)(i,j);
if (i+1 == nRows()) { o <<" } \n"; }
else { o <<" }, \n"; }
}
o << "};\n";
o << std::scientific;
}
//-----------------------------------------------------------------------------
//* sets all matrix elements to zero
template<typename T>
inline Matrix<T>& Matrix<T>::zero()
{
set_all_elements_to(T(0));
return *this;
}
//-----------------------------------------------------------------------------
//* sets to identity
template<typename T>
inline Matrix<T>& Matrix<T>::identity(int nrows)
{
if (nrows == 0) {
SQCK(*this, "DenseMatrix::inv(), matrix not square"); // check matrix is square
nrows = nRows();
}
reset(nrows,nrows);
for(INDEX i=0; i< nRows(); i++) (*this)(i,i) = 1;
return *this;
}
//-----------------------------------------------------------------------------
//* returns the total number of elements
template<typename T>
inline INDEX Matrix<T>::size() const
{
return nRows()*nCols();
}
//-----------------------------------------------------------------------------
//* returns true if (i,j) is within the range of the matrix
template<typename T>
inline bool Matrix<T>::in_range(INDEX i, INDEX j) const
{
return i<nRows() && j<nCols();
}
//-----------------------------------------------------------------------------
//* returns true if the matrix size is rs x cs
template<typename T>
inline bool Matrix<T>::is_size(INDEX rs, INDEX cs) const
{
return nRows()==rs && nCols()==cs;
}
//-----------------------------------------------------------------------------
//* returns true if the matrix is square and not empty
template<typename T>
inline bool Matrix<T>::is_square() const
{
return nRows()==nCols() && nRows();
}
//-----------------------------------------------------------------------------
//* returns true if Matrix, m, is the same size as this
template<typename T>
inline bool Matrix<T>::same_size(const Matrix<T> &m) const
{
return is_size(m.nRows(), m.nCols());
}
//-----------------------------------------------------------------------------
//* returns true if Matrix a and Matrix b are the same size
template<typename T>
inline bool Matrix<T>::same_size(const Matrix<T> &a, const Matrix<T> &b)
{
return a.same_size(b);
}
//-----------------------------------------------------------------------------
//* returns true if Matrix a rows = Matrix b cols
template<typename T>
inline bool Matrix<T>::cols_equals_rows(const Matrix<T> &a, const Matrix<T> &b)
{
return a.nCols() == b.nRows();
}
//-----------------------------------------------------------------------------
//* returns true if no value is outside of the range
template<typename T>
inline bool Matrix<T>::check_range(T min, T max) const
{
for (INDEX i = 0; i < this->nRows(); i++) {
for (INDEX j = 0; j < this->nCols(); j++) {
T val = (*this)(i,j);
if ( (val > max) || (val < min) ) return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
//* Displays indexing error message and quits
template<typename T>
void ierror(const Matrix<T> &a, const char *FILE, int LINE, INDEX i, INDEX j)
{
std::cout << "Error: Matrix indexing failure ";
std::cout << "in file: " << FILE << ", line: "<< LINE <<"\n";
std::cout << "Tried accessing index (" << i << ", " << j <<")\n";
std::cout << "Matrix size was "<< a.nRows() << "x" << a.nCols() << "\n";
ERROR_FOR_BACKTRACE
exit(EXIT_FAILURE);
}
//-----------------------------------------------------------------------------
//* Displays custom message and indexing error and quits
template<typename T>
void ierror(const Matrix<T> &a, INDEX i, INDEX j, const std::string m)
{
std::cout << m << "\n";
std::cout << "Tried accessing index (" << i << ", " << j <<")\n";
std::cout << "Matrix size was "<< a.nRows() << "x" << a.nCols() << "\n";
ERROR_FOR_BACKTRACE
exit(EXIT_FAILURE);
}
//-----------------------------------------------------------------------------
//* Displays matrix compatibility error message
template<typename T>
void merror(const Matrix<T> &a, const Matrix<T> &b, const std::string m)
{
std::cout << "Error: " << m << "\n";
std::cout << "Matrix sizes were " << a.nRows() << "x" << a.nCols();
if (&a != &b) std::cout << ", and "<< b.nRows() << "x" << b.nCols();
std::cout << "\n";
if (a.size() < 100) a.print("Matrix");
ERROR_FOR_BACKTRACE
exit(EXIT_FAILURE);
}
//-----------------------------------------------------------------------------
//* returns upper or lower half of a partitioned matrix
//* A1 is the on-diagonal square matrix, A2 is the off-diagonal matrix
//* rowsIn is the rows to be placed in A1
//* rows is the map for A1, (rows,colsC) is the map for A2
template <typename T>
void Matrix<T>::row_partition(const std::set<int> & rowsIn,
std::set<int> & rows, std::set<int> & colsC,
DenseMatrix<T> & A1, DenseMatrix<T> & A2, bool complement) const
{
if (complement) {
for (INDEX i = 0; i < this->nRows(); i++) {
if (rowsIn.find(i) == rowsIn.end() ) rows.insert(i);
}
}
else rows = rowsIn;
// complement of set "rows" in set of this.cols is "cols"
for (INDEX i = 0; i < this->nCols(); i++) {
if (rows.find(i) == rows.end() ) colsC.insert(i);
}
// degenerate cases
if (int(rows.size()) == this->nCols()) {
A1 = (*this);
A2.reset(0,0);
return;
}
else if (rows.size() == 0) {
A1.reset(0,0);
A2 = (*this);
return;
}
// non-degenerate case
int nrows = rows.size();
int ncolsC = colsC.size();
A1.reset(nrows,nrows);
A2.reset(nrows,ncolsC);
std::set<int>::const_iterator itrI, itrJ;
INDEX i =0;
for (itrI = rows.begin(); itrI != rows.end(); itrI++) {
INDEX j = 0;
for (itrJ = rows.begin(); itrJ != rows.end(); itrJ++) {
A1(i,j) = (*this)(*itrI,*itrJ);
j++;
}
j = 0;
for (itrJ = colsC.begin(); itrJ != colsC.end(); itrJ++) {
A2(i,j) = (*this)(*itrI,*itrJ);
j++;
}
i++;
}
}
template <typename T>
std::set<int> Matrix<T>::row_partition(const std::set<int> & rows,
DenseMatrix<T> & A1, DenseMatrix<T> & A2) const
{
// complement of set "rows" in set of this.cols is "cols"
std::set<int> colsC;
for (INDEX i = 0; i < this->nCols(); i++) {
if (rows.find(i) == rows.end() ) colsC.insert(i);
}
// degenerate cases
if (int(rows.size()) == this->nCols()) {
A1 = (*this);
A2.reset(0,0);
return colsC;
}
else if (rows.size() == 0) {
A1.reset(0,0);
A2 = (*this);
return colsC;
}
// non-degenerate case
int nrows = rows.size();
int ncolsC = colsC.size();
A1.reset(nrows,nrows);
A2.reset(nrows,ncolsC);
std::set<int>::const_iterator itrI, itrJ;
INDEX i =0;
for (itrI = rows.begin(); itrI != rows.end(); itrI++) {
INDEX j = 0;
for (itrJ = rows.begin(); itrJ != rows.end(); itrJ++) {
A1(i,j) = (*this)(*itrI,*itrJ);
j++;
}
j = 0;
for (itrJ = colsC.begin(); itrJ != colsC.end(); itrJ++) {
A2(i,j) = (*this)(*itrI,*itrJ);
j++;
}
i++;
}
return colsC;
}
//-----------------------------------------------------------------------------
//* returns row & column mapped matrix
template <typename T>
void Matrix<T>::map(const std::set<int> & rows, const std::set<int> & cols,
DenseMatrix<T> & A ) const
{
if (rows.size() == 0 || cols.size() == 0 ) {
A.reset(0,0);
return;
}
int nrows = rows.size();
int ncols = cols.size();
A.reset(nrows,ncols);
std::set<int>::const_iterator itrI, itrJ;
INDEX i =0;
for (itrI = rows.begin(); itrI != rows.end(); itrI++) {
INDEX j = 0;
for (itrJ = cols.begin(); itrJ != cols.end(); itrJ++) {
A(i,j) = (*this)(*itrI,*itrJ);
j++;
}
i++;
}
}
//-----------------------------------------------------------------------------
//* inserts elements from a smaller matrix
template <typename T>
void Matrix<T>::insert(const std::set<int> & rows, const std::set<int> & cols,
const DenseMatrix<T> & A )
{
if (rows.size() == 0 || cols.size() == 0 ) return;
std::set<int>::const_iterator itrI, itrJ;
int i =0;
for (itrI = rows.begin(); itrI != rows.end(); itrI++) {
int j = 0;
for (itrJ = cols.begin(); itrJ != cols.end(); itrJ++) {
(*this)(*itrI,*itrJ) = A(i,j);
//std::cout << *itrI << " " << *itrJ << " : " << (*this)(*itrI,*itrJ) << "\n";
j++;
}
i++;
}
}
//-----------------------------------------------------------------------------
//* assemble elements from a smaller matrix
template <typename T>
void Matrix<T>::assemble(const std::set<int> & rows, const std::set<int> & cols,
const DenseMatrix<T> & A )
{
if (rows.size() == 0 || cols.size() == 0 ) return;
std::set<int>::const_iterator itrI, itrJ;
int i =0;
for (itrI = rows.begin(); itrI != rows.end(); itrI++) {
int j = 0;
for (itrJ = cols.begin(); itrJ != cols.end(); itrJ++) {
(*this)(*itrI,*itrJ) += A(i,j);
j++;
}
i++;
}
}
//-----------------------------------------------------------------------------
} // end namespace
#endif
|