1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
#include "ParSparseMatrix.h"
#include <fstream>
#ifdef TIMING_ON
double time_diff(timespec &start, timespec &end)
{
return (double)(1e9 * (end.tv_sec - start.tv_sec) +
end.tv_nsec - start.tv_nsec) / 1e9;
}
#endif
using namespace MPI_Wrappers;
using namespace std;
namespace ATC_matrix {
// All the same constructors as for SparseMatrix
ParSparseMatrix<double>::ParSparseMatrix(MPI_Comm comm, INDEX rows, INDEX cols)
: SparseMatrix<double>(rows, cols), _comm(comm) {}
ParSparseMatrix<double>::ParSparseMatrix(MPI_Comm comm,
const SparseMatrix<double> &c) :
SparseMatrix<double>(c), _comm(comm) {}
ParSparseMatrix<double>::ParSparseMatrix(MPI_Comm comm,
INDEX* rows, INDEX* cols, double* vals, INDEX size,
INDEX nRows, INDEX nCols, INDEX nRowsCRS)
: SparseMatrix<double>(rows, cols, vals, size, nRows,
nCols, nRowsCRS), _comm(comm) {}
//============================================================
void ParSparseMatrix<double>::MultMv(const Vector<double>& v,
DenseVector<double>& c) const
{
int numProcs = MPI_Wrappers::size(_comm);
#ifdef DISABLE_PAR_HEURISTICS
// Use much more lenient heuristics to exercise parallel code
if (numProcs == 1 || _size < 300) {
#else
// These are simple heuristics to perform multiplication in serial if
// parallel will be slower. They were determined experimentally.
if ( numProcs == 1 ||
(_size < 50000 || _size > 10000000) ||
((_size < 150000 || _size > 5000000) && numProcs > 8) ||
((_size < 500000 || _size > 2500000) && numProcs > 16 ) ||
(numProcs > 32)) {
#endif
SparseMatrix<double>::MultMv(v, c);
return;
}
SparseMatrix<double>::compress(*this);
GCK(*this, v, this->nCols() != v.size(), "ParSparseMatrix * Vector")
SparseMatrix<double> A_local;
// Split the sparse matrix. partition() takes a ParSparMat, so we cast.
partition(*static_cast<ParSparseMatrix<double>*>(&A_local));
// actually do multiplication - end up with partial result vector
// on each processor
#ifdef TIMING_ON
timespec before, after;
// barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &before);
#endif
DenseVector<double> c_local = A_local * v;
#ifdef TIMING_ON
// barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &after);
cout << "P" << MPI_Wrappers::rank(MPI_COMM_WORLD) << " " << time_diff(before,after) << " mat.vec time\n";
//LammpsInterface::instance()->all_print((after-before),"mat.vec time");
barrier(MPI_COMM_WORLD);
#endif
// destroy A_local intelligently
static_cast<ParSparseMatrix<double>*>(&A_local)->finalize();
// Add all the result vectors together on each processor.
#ifdef TIMING_ON
barrier(MPI_COMM_WORLD);
//barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &before);
#endif
allsum(_comm, c_local.ptr(), c.ptr(), c_local.size());
#ifdef TIMING_ON
//barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &after);
cout << "P" << MPI_Wrappers::rank(MPI_COMM_WORLD) << " " << time_diff(before,after) << " allsum time\n";
//LammpsInterface::instance()->print_msg_once((after-before),"allsum time");
#endif
}
DenseVector<double> ParSparseMatrix<double>::transMat(
const Vector<double>& v) const {
SparseMatrix<double>::compress(*this);
GCK(*this, v, this->nRows() != v.size(), "ParSparseMatrix transpose * Vector")
DenseVector<double> c(nCols(), true);
SparseMatrix<double> A_local;
partition(*static_cast<ParSparseMatrix<double>*>(&A_local));
// actually do multiplication - end up with partial result vector
// on each processor
DenseVector<double> c_local = A_local.transMat(v);
static_cast<ParSparseMatrix<double>*>(&A_local)->finalize();
// Add all the result vectors together on each processor.
allsum(_comm, c_local.ptr(), c.ptr(), c_local.size());
return c;
}
void ParSparseMatrix<double>::MultAB(const Matrix<double>& B,
DenseMatrix<double>& C) const {
SparseMatrix<double>::compress(*this);
GCK(*this, B, this->nCols() != B.nRows(), "ParSparseMatrix * Matrix")
SparseMatrix<double> A_local;
partition(*static_cast<ParSparseMatrix<double>*>(&A_local));
// actually do multiplication - end up with partial result matrix
// on each processor
#ifdef TIMING_ON
timespec before, after;
barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &before);
#endif
DenseMatrix<double> C_local = A_local * B;
#ifdef TIMING_ON
barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &after);
cout << "P" << MPI_Wrappers::rank(MPI_COMM_WORLD) << " " << time_diff(after,before) << " mat.vec time\n";
//LammpsInterface::instance()->all_print((after-before),"mat.vec time");
#endif
static_cast<ParSparseMatrix<double>*>(&A_local)->finalize();
// Add all the result vectors together on each processor.
#ifdef TIMING_ON
barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &before);
#endif
allsum(_comm, C_local.ptr(), C.ptr(), C_local.size());
#ifdef TIMING_ON
barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &after);
cout << "P" << MPI_Wrappers::rank(MPI_COMM_WORLD) << " " << time_diff(after,before) << " allsum time\n";
//LammpsInterface::instance()->print_msg_once((after-before),"allsum time");
#endif
}
DenseMatrix<double> ParSparseMatrix<double>::transMat(
const DenseMatrix<double>& B) const {
SparseMatrix<double>::compress(*this);
GCK(*this, B, this->nRows() != B.nRows(), "ParSparseMatrix transpose * Matrix")
DenseMatrix<double> C(nCols(), B.nCols(), true);
SparseMatrix<double> A_local;
partition(*static_cast<ParSparseMatrix<double>*>(&A_local));
// actually do multiplication - end up with partial result matrix
// on each processor
DenseMatrix<double> C_local = A_local.transMat(B);
static_cast<ParSparseMatrix<double>*>(&A_local)->finalize();
// Add all the result vectors together on each processor.
allsum(_comm, C_local.ptr(), C.ptr(), C_local.size());
return C;
}
/*
The two commented-out functions both need to return SparseMatrices. It's hard
to combine sparse matrices between processors, so this has not yet been completed.
void ParMultAB(const SparseMatrix<double> &B, SparseMatrix<double> &C) const
{
//SparseMatrix<T>::compress(*this);
GCK(*this, B, this->nCols()!=B.nRows(), "ParSparseMatrix * SparseMatrix")
ParSparseMatrix<double> A_local(this->_comm);
this->partition(A_local);
// actually do multiplication - end up with partial result matrix
// on each processor
SparseMatrix<double> C_local = ((SparseMatrix<double>)A_local) * B;
// destroy newA intelligently
static_cast<ParSparseMatrix<double>*>(&A_local)->finalize();
// Add all the result vectors together on each processor.
sumSparse(C_local, C);
}*/
DenseMatrix<double> ParSparseMatrix<double>::transMat(
const SparseMatrix<double>& B) const {
SparseMatrix<double>::compress(*this);
GCK(*this, B, this->nRows() != B.nRows(), "ParSparseMatrix transpose * SparseMatrix")
DenseMatrix<double> C(nCols(), B.nCols(), true);
SparseMatrix<double> A_local;
partition(*static_cast<ParSparseMatrix<double>*>(&A_local));
// actually do multiplication - end up with partial result matrix
// on each processor
DenseMatrix<double> C_local = A_local.transMat(B);
static_cast<ParSparseMatrix<double>*>(&A_local)->finalize();
// Add all the result vectors together on each processor.
allsum(_comm, C_local.ptr(), C.ptr(), C_local.size());
return C;
}
/*void ParMultAB(const DiagonalMatrix<double> &B, SparseMatrix<double> &C) const
{
//SparseMatrix<T>::compress(*this);
GCK(*this, B, this->nCols()!=B.nRows(), "ParSparseMatrix * DiagonalMatrix")
ParSparseMatrix<double> A_local(this->_comm);
this->partition(A_local);
// actually do multiplication - end up with partial result matrix
// on each processor
SparseMatrix<double> C_local = ((SparseMatrix<double>)A_local) * B;
// destroy newA intelligently
A_local._val = nullptr;
A_local._ja = nullptr;
// Add all the result vectors together on each processor.
sumSparse(C_local, C);
}*/
void ParSparseMatrix<double>::partition(
ParSparseMatrix<double>& A_local) const {
// create new sparse matrix on each processor, with same size and
// a disjoint subset of A's elements.
//
// Ex: on two processors,
//
// |0 1 0| |0 1 0| |0 0 0|
// |2 6 0| splits into |2 0 0| on proc 1 and |0 6 0| on proc 2
// |0 0 3| |0 0 0| |0 0 3|
//
// We compute the subproducts individually on each processor, then
// sum up all the vectors to get our final result.
//
// decide which elements will be in each submatrix
INDEX startIndex = (MPI_Wrappers::rank(_comm) * size()) / MPI_Wrappers::size(_comm);
INDEX endIndex = ((MPI_Wrappers::rank(_comm) + 1) * size()) / MPI_Wrappers::size(_comm);
// update number of elements
A_local._nRows = _nRows;
A_local._nCols = _nCols;
A_local._size = endIndex - startIndex;
A_local._nRowsCRS = _nRowsCRS;
// use pointer arithmetic to:
// set newA's _val (to inside A's _val)
A_local._val = _val + startIndex;
// set newA's _ja (to inside A's _ja)
A_local._ja = _ja + startIndex;
// set newA's _ia (from scratch)
A_local._ia = new INDEX[nRowsCRS() + 1];
INDEX numRows = nRowsCRS();
if (A_local._size > 0) {
for (INDEX i = 0; i < numRows + 1; i++) {
A_local._ia[i] = std::min(std::max((_ia[i] - startIndex), 0),
endIndex - startIndex);
}
} else {
A_local._nRowsCRS = 0;
}
}
// Prepare an A_local matrix for deletion after it has been loaded with
// data members from another matrix.
void ParSparseMatrix<double>::finalize() {
_val = nullptr;
_ja = nullptr;
}
void ParSparseMatrix<double>::operator=(const SparseMatrix<double> &source)
{
copy(source);
}
/*void sumSparse(SparseMatrix<double> &C_local, SparseMatrix<double> &C)
{
}*/
}
|