File: PoissonSolver.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (218 lines) | stat: -rw-r--r-- 6,624 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#include "PoissonSolver.h"
#include "ATC_Coupling.h"
#include "FE_Engine.h"
#include "PhysicsModel.h"
#include "PrescribedDataManager.h"
#include "LinearSolver.h"
#include <utility>
#include <iostream>

using std::pair;



namespace ATC {

// ====================================================================
//  PoissonSolver
// ====================================================================
PoissonSolver::PoissonSolver(
    const FieldName fieldName,
    const PhysicsModel * physicsModel,
    const FE_Engine * feEngine,
    const PrescribedDataManager * prescribedDataMgr,
    /*const*/ ATC_Coupling * atc,
    const Array2D<bool> & rhsMask,
    const int solverType,
    bool parallel
)
  : atc_(atc),
    feEngine_(feEngine),
    prescribedDataMgr_(prescribedDataMgr),
    physicsModel_(physicsModel),
    fieldName_(fieldName),
    rhsMask_(rhsMask),
    linear_(false),
    solver_(nullptr),
    solverNL_(nullptr),
    tangent_(nullptr),
    solverType_(solverType),
    solverTol_(0),
    solverMaxIter_(0),
    integrationType_(FULL_DOMAIN),
    parallel_(parallel)
{
  if (physicsModel_->has_linear_rhs(fieldName)) {
    linear_ = true;
    rhsMask_(fieldName,FLUX) = false;
  }

  else {
    rhsMask_(fieldName,FLUX)   = true;
    rhsMask_(fieldName,SOURCE) = true;
  }

  if (prescribedDataMgr_->has_robin_source(fieldName)) {



    rhsMask_(fieldName,ROBIN_SOURCE) = true;
  }
}
// --------------------------------------------------------------------
PoissonSolver::~PoissonSolver()
{
  if (tangent_) delete tangent_;
  if (solverNL_) delete solverNL_;
  if (solver_) delete solver_;
}

// --------------------------------------------------------------------
//  Parser
// --------------------------------------------------------------------

  bool PoissonSolver::modify(int /* narg */, char **arg)
{
  bool match = false;
  /*! \page man_poisson_solver fix_modify AtC poisson_solver
      \section syntax
      fix_modify AtC poisson_solver mesh create <nx> <ny> <nz> <region-id>
      <f|p> <f|p> <f|p>
      - nx ny nz = number of elements in x, y, z
      - region-id = id of region that is to be meshed
      - f p p  = perioidicity flags for x, y, z
      \section examples
      <TT> fix_modify AtC poisson_solver mesh create 10 1 1 feRegion p p p </TT>
      \section description
      Creates a uniform mesh in a rectangular region
      \section restrictions
      creates only uniform rectangular grids in a rectangular region
      \section related
      \section default
      none
  */
  int argIdx = 0;
  if (strcmp(arg[argIdx],"poisson_solver")==0) {
    argIdx++;
    if (strcmp(arg[argIdx],"mesh")==0) {
      argIdx++;
      // create a FE_Engine

      //feEngine_ = new FE_Engine(this); need alternate constructor?
      // send args to new engine
      // arg[0] = "mesh";
      // arg[1] = "create";
      // feEngine_->modify(narg,arg);

    }
  }
  return match;
}
// --------------------------------------------------------------------
//  Initialize
// --------------------------------------------------------------------
void PoissonSolver::initialize(void)
{
  nNodes_ = feEngine_->num_nodes();

  if (atc_->source_atomic_quadrature(fieldName_))
    integrationType_ = FULL_DOMAIN_ATOMIC_QUADRATURE_SOURCE;

  // compute penalty for Dirichlet boundaries
  if (prescribedDataMgr_->none_fixed(fieldName_))
    throw ATC_Error("Poisson solver needs Dirichlet data");

  const BC_SET & bcs = (prescribedDataMgr_->bcs(fieldName_))[0];

  if (linear_) { // constant rhs
    if (! solver_ ) {
      pair<FieldName,FieldName> row_col(fieldName_,fieldName_);
      Array2D <bool> rhsMask(NUM_FIELDS,NUM_FLUX);
      rhsMask = false; rhsMask(fieldName_,FLUX) = true;

      if (prescribedDataMgr_->has_robin_source(fieldName_)) {
        rhsMask(fieldName_,ROBIN_SOURCE) = true;
      }
      // compute stiffness for Poisson solve
      atc_->compute_rhs_tangent(row_col, rhsMask, atc_->fields(),
        stiffness_, FULL_DOMAIN, physicsModel_);
      // create solver
      solver_ = new LinearSolver(stiffness_,bcs,solverType_,LinearSolver::AUTO_HANDLE_CONSTRAINTS,parallel_);
    }
    else {

    // re-initialize
    solver_->initialize(&bcs);
    }
    if (solverTol_) solver_->set_tolerance(solverTol_);
    if (solverMaxIter_) solver_->set_max_iterations(solverMaxIter_);

  }
  else {
//  print_mask(rhsMask_);
    if ( solverNL_ )  delete solverNL_;
    tangent_ = new PhysicsModelTangentOperator(atc_,physicsModel_, rhsMask_, integrationType_, fieldName_);

    solverNL_ = new NonLinearSolver(tangent_,&bcs,0,parallel_);

    if (solverTol_) solverNL_->set_residual_tolerance(solverTol_);
    if (solverMaxIter_) solverNL_->set_max_iterations(solverMaxIter_);
  }
}

// --------------------------------------------------------------------
//  Solve
// --------------------------------------------------------------------
bool PoissonSolver::solve(FIELDS & fields, FIELDS & rhs)
{
  atc_->compute_rhs_vector(rhsMask_, fields, rhs,
    integrationType_, physicsModel_);
  CLON_VEC f = column(fields[fieldName_].set_quantity(),0);
  CLON_VEC r = column(rhs[fieldName_].quantity(),0);
  bool converged = false;
  if (linear_) {converged = solver_->solve(f,r);}
  else         {converged = solverNL_->solve(f);}

  if (atc_->source_atomic_quadrature(fieldName_)
    && LammpsInterface::instance()->atom_charge() ) set_charges(fields);
  return converged;
}
bool PoissonSolver::solve(DENS_MAT & field, const DENS_MAT & rhs)
{

  CLON_VEC f = column(field,0);
  CLON_VEC r = column(rhs,0);
  bool converged = false;
  if (linear_) {converged = solver_->solve(f,r);}
  else         {converged = solverNL_->solve(f);}

  if (atc_->source_atomic_quadrature(fieldName_)
    && LammpsInterface::instance()->atom_charge() ) set_charges(atc_->fields());
  return converged;
}

// --------------------------------------------------------------------
//  set charges on atoms
// --------------------------------------------------------------------
void PoissonSolver::set_charges(FIELDS & fields)
{
  FIELD_MATS sources;

  atc_->compute_sources_at_atoms(rhsMask_, fields, physicsModel_,sources);
  FIELD_MATS::const_iterator nField = sources.find(fieldName_);
  if (nField != sources.end()) {
    const DENS_MAT & electronCharges = nField->second;
    double *  q = LammpsInterface::instance()->atom_charge();
    int nLocal = atc_->nlocal();
    if (nLocal > 0) {
      const Array<int> & i2a = atc_->internal_to_atom_map();
      for (int i=0; i < nLocal; i++) {

        int atomIdx = i2a(i);
        q[atomIdx] = -electronCharges(i,0);
      }
    }
  }
}

} // namespace ATC