1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
|
// ATC Headers
#include "SchrodingerSolver.h"
#include "ATC_Error.h"
#include "ATC_Coupling.h"
#include "LammpsInterface.h"
#include "PrescribedDataManager.h"
#include "PhysicsModel.h"
#include "LinearSolver.h"
#include "PoissonSolver.h"
#include "Utility.h"
#include <utility>
using std::pair;
using std::set;
using std::stringstream;
using std::min;
using ATC_Utility::to_string;
using ATC_Utility::sgn;
const double zero_tol = 1.e-12;
const double f_tol = 1.e-8;
namespace ATC {
enum oneDconservationEnum {ONED_DENSITY=0, ONED_FLUX, ONED_GLOBAL_FLUX};
double fermi_dirac(const double E, const double T)
{
double f = 1.0;
if (T > 0) f = 1.0 / ( exp(E/(kBeV_*T))+1.0 );
else if (E > 0) f = 0;
return f;
};
//========================================================
// Schrodinger solve
//========================================================
SchrodingerSolver::SchrodingerSolver(
const FieldName fieldName,
const PhysicsModel * physicsModel,
const FE_Engine * feEngine,
const PrescribedDataManager * prescribedDataMgr,
/*const*/ ATC_Coupling * atc,
bool parallel
)
: atc_(atc),
feEngine_(feEngine),
prescribedDataMgr_(prescribedDataMgr),
physicsModel_(physicsModel),
fieldName_(fieldName),
nNodes_(atc->num_nodes()),
parallel_(parallel)
{
}
//-----------------------------------------------------
void SchrodingerSolver::initialize()
{
SPAR_MAT sparseM;
atc_->fe_engine()->compute_mass_matrix(sparseM);
M_ = sparseM.dense_copy();
}
//-----------------------------------------------------
bool SchrodingerSolver::solve(FIELDS & /* fields */)
{
// typedef struct{float real, imag;} COMPLEX;
SPAR_MAT stiffness_;
Array2D <bool> rhsMask(NUM_FIELDS,NUM_FLUX);
rhsMask = false;
rhsMask(ELECTRON_WAVEFUNCTION,FLUX) = true;
rhsMask(ELECTRON_WAVEFUNCTION,SOURCE) = true;
pair<FieldName,FieldName> row_col(ELECTRON_WAVEFUNCTION,
ELECTRON_WAVEFUNCTION);
//set_fixed_nodes();
atc_->fe_engine()->compute_tangent_matrix(
rhsMask, row_col, atc_->fields(), physicsModel_,
atc_->element_to_material_map(), stiffness_);
DENS_MAT K(stiffness_.dense_copy());
set<int> fixedNodes = prescribedDataMgr_->fixed_nodes(ELECTRON_WAVEFUNCTION);
const BC_SET & bcs
= (prescribedDataMgr_->bcs(ELECTRON_WAVEFUNCTION))[0];
DENS_MAT & psi = (atc_->field(ELECTRON_WAVEFUNCTION)).set_quantity();
DENS_MAT & eVecs = (atc_->field(ELECTRON_WAVEFUNCTIONS)).set_quantity();
DENS_MAT & eVals = (atc_->field(ELECTRON_WAVEFUNCTION_ENERGIES)).set_quantity();
if (prescribedDataMgr_->all_fixed(ELECTRON_WAVEFUNCTION)) {
ATC::LammpsInterface::instance()->print_msg("all wavefunctions fixed");
psi.reset(nNodes_,1);
eVecs.reset(nNodes_,1);
eVals.reset(nNodes_,1);
return true;
}
// (1) Helmholtz solve for inhomongeneous bcs
LinearSolver helmholtzSolver_(K,bcs,LinearSolver::AUTO_SOLVE,-1,parallel_);
psi.reset(nNodes_,1);
// (2) Eigenvalue solve
helmholtzSolver_.eigen_system(eVals,eVecs,&M_);
return true;
}
//========================================================
// Schrodinger solve on slices
//========================================================
SliceSchrodingerSolver::SliceSchrodingerSolver(
const FieldName fieldName,
const PhysicsModel * physicsModel,
const FE_Engine * feEngine,
const PrescribedDataManager * prescribedDataMgr,
/*const*/ ATC_Coupling * atc,
const Array< set<int> > & oneDslices,
const Array< double > & oneDdxs,
bool parallel
)
: SchrodingerSolver(fieldName, physicsModel, feEngine, prescribedDataMgr,
atc, parallel),
oneDslices_(oneDslices),
oneDdxs_(oneDdxs)
{}
//--------------------------------------------------------
void SliceSchrodingerSolver::initialize()
{
SchrodingerSolver::initialize();
}
//--------------------------------------------------------
// compute charge density per slice
//--------------------------------------------------------
bool SliceSchrodingerSolver::solve(FIELDS & /* fields */)
{
// fields
DENS_MAT & psi = (atc_->field(ELECTRON_WAVEFUNCTION)).set_quantity();
DENS_MAT & eVecs = (atc_->field(ELECTRON_WAVEFUNCTIONS)).set_quantity();
DENS_MAT & eVals = (atc_->field(ELECTRON_WAVEFUNCTION_ENERGIES)).set_quantity();
psi.reset(nNodes_,1);
eVecs.reset(nNodes_,nNodes_);
eVals.reset(nNodes_,1);
DENS_MAT & Ef = (atc_->field(FERMI_ENERGY)).set_quantity();
DENS_MAT & n = (atc_->field(ELECTRON_DENSITY)).set_quantity();
DENS_MAT & T = (atc_->field(ELECTRON_TEMPERATURE)).set_quantity();
// stiffness = K + V M
SPAR_MAT stiffness_;
Array2D <bool> rhsMask(NUM_FIELDS,NUM_FLUX);
rhsMask = false;
rhsMask(ELECTRON_WAVEFUNCTION,FLUX) = true;
rhsMask(ELECTRON_WAVEFUNCTION,SOURCE) = true;
pair<FieldName,FieldName> row_col(ELECTRON_WAVEFUNCTION,
ELECTRON_WAVEFUNCTION);
atc_->fe_engine()->compute_tangent_matrix(
rhsMask, row_col, atc_->fields(), physicsModel_,
atc_->element_to_material_map(), stiffness_);
DENS_MAT K(stiffness_.dense_copy());
// Eigenvalue solve
DENS_MAT K1,M1;
int nslices = oneDslices_.size();
DENS_MAT b ;
DENS_MAT evals1,evecs1 ;
DENS_MAT n1 ;
BCS bcs;
set <int> one;
one.insert(0);
set <int> eindex;
int iEVal = 0;
for (int islice = 0; islice < nslices ; islice++) {
set<int> & slice = oneDslices_(islice);
int snodes = slice.size();
prescribedDataMgr_->bcs(ELECTRON_WAVEFUNCTION,slice,bcs,true);
const BC_SET & bc = bcs[0];
int nfixed = bc.size();
if (nfixed != snodes) {
// A: solve for e-values and wavefunctions
K.map(slice,slice,K1);
M_.map(slice,slice,M1);
LinearSolver eigensolver(K1,bc,LinearSolver::AUTO_SOLVE,-1);
// wave functions
evals1.reset(snodes,1);
evecs1.reset(snodes,snodes);
eigensolver.eigen_system(evals1,evecs1,&M1);
eindex.clear();
for (int j = 0; j < snodes; j++) eindex.insert(iEVal++);
eVals.insert(eindex,one, evals1);
eindex.clear();
for (int j = 0; j < snodes; j++) eindex.insert(j);
eVecs.insert(slice,eindex,evecs1);
// slice charge density
n1.reset(snodes,1);
set<int>::const_iterator iset;
double aveE_f = 0;
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
aveE_f += Ef(gnode,0);
}
aveE_f /= snodes;
//#define VERBOSE
#ifdef VERBOSE
stringstream ss;
ss << " slice "+to_string(islice+1)+" E_f "+to_string(aveE_f) << "\n"
<< "#-----------------------------------------------\n"
<< "# E-Ef f psi n\n"
<< "#-----------------------------------------------\n";
#endif
// B: compute charge density on slice
int node = 0;
for (iset = slice.begin(); iset != slice.end(); iset++) { // node
int gnode = *iset;
double temp = T(gnode,0);
for (int mode = 0; mode < snodes-nfixed; mode++) {
double Ei = evals1(mode,0);
double E = Ei-aveE_f;
double f = fermi_dirac(E,temp);
double psi1 = evecs1(node,mode); // 2nd index corresp to evals order
#ifdef VERBOSE
ss << node<<":"<<mode << " " << to_string(6,E) << " " << to_string(6,f) << " " << to_string(6,psi1) << " " << to_string(6,n1(node,0)+psi1*psi1*f) << "\n";
#endif
if (f < f_tol) break; // take advantage of E ordering
n1(node,0) += psi1*psi1*f;
}
node++;
}
#ifdef VERBOSE
ATC::LammpsInterface::instance()->print_msg_once(ss.str());
#endif
n.insert(slice,one, n1); // note not "assemble"
}
}
return true;
}
//========================================================
// Schrodinger-Poisson Manager
//========================================================
SchrodingerPoissonManager::SchrodingerPoissonManager() :
maxConsistencyIter_(0),
maxConstraintIter_(0),
oneD_(false),
oneDconserve_(ONED_FLUX),
Ef_shift_(0.),
safe_dEf_(0.),
tol_(1.e-10),
mu_(1.),D_(0.)
{
}
//----------------------------------------------------------
bool SchrodingerPoissonManager::modify(int /* narg */, char **arg)
{
bool match = false;
int argIndx = 0;
if (strcmp(arg[argIndx],"self_consistency")==0) {
argIndx++;
maxConsistencyIter_ = atoi(arg[argIndx]);
match = true;
}
else if (strcmp(arg[argIndx],"conserve")==0) {
oneD_ = true;
argIndx++;
if (strcmp(arg[argIndx],"density")==0) oneDconserve_ = ONED_DENSITY;
else if (strcmp(arg[argIndx],"flux")==0) oneDconserve_ = ONED_FLUX;
else oneDconserve_ = ONED_GLOBAL_FLUX;
argIndx++;
maxConstraintIter_ = atoi(arg[argIndx]);
match = true;
}
else if (strcmp(arg[argIndx],"initial_fermi_level")==0) {
argIndx++;
Ef_shift_ = atof(arg[argIndx]);
match = true;
}
else if (strcmp(arg[argIndx],"safe_fermi_increment")==0) {
argIndx++;
safe_dEf_ = atof(arg[argIndx]);
match = true;
}
else if (strcmp(arg[argIndx],"relaxation")==0) {
argIndx++;
alpha_ = atof(arg[argIndx]);
match = true;
}
else if (strcmp(arg[argIndx],"tolerance")==0) {
argIndx++;
tol_ = atof(arg[argIndx]);
match = true;
}
else if (strcmp(arg[argIndx],"mobility")==0) {
argIndx++;
mu_ = atof(arg[argIndx]);
match = true;
}
else if (strcmp(arg[argIndx],"diffusivity")==0) {
argIndx++;
D_ = atof(arg[argIndx]);
match = true;
}
return match;
}
//----------------------------------------------------------------
SchrodingerPoissonSolver * SchrodingerPoissonManager::initialize(
/*const*/ ATC_Coupling * atc,
SchrodingerSolver * schrodingerSolver,
PoissonSolver * poissonSolver,
const PhysicsModel * physicsModel
)
{
SchrodingerPoissonSolver * ptr;
if (oneD_) {
if (oneDconserve_ == ONED_GLOBAL_FLUX) {
ptr = new GlobalSliceSchrodingerPoissonSolver(atc,
schrodingerSolver,poissonSolver,physicsModel,maxConsistencyIter_,
maxConstraintIter_, oneDconserve_, Ef_shift_, alpha_, safe_dEf_, tol_,
mu_,D_);
}
else {
ptr = new SliceSchrodingerPoissonSolver(atc,
schrodingerSolver,poissonSolver,physicsModel,maxConsistencyIter_,
maxConstraintIter_, oneDconserve_, Ef_shift_, safe_dEf_);
}
}
else {
ptr = new SchrodingerPoissonSolver(atc,
schrodingerSolver,poissonSolver,physicsModel,maxConsistencyIter_);
}
return ptr;
}
//===================================================================
// SchrodingerPoissonSolver
//===================================================================
SchrodingerPoissonSolver::SchrodingerPoissonSolver(
/*const*/ ATC_Coupling * atc,
SchrodingerSolver * schrodingerSolver,
PoissonSolver * poissonSolver,
const PhysicsModel * physicsModel,
int maxConsistencyIter
) :
atc_(atc),
schrodingerSolver_(schrodingerSolver),
poissonSolver_(poissonSolver),
physicsModel_(physicsModel),
maxConsistencyIter_(maxConsistencyIter),
nNodes_(atc_->num_nodes())
{
}
//----------------------------------------------------------------------
void SchrodingerPoissonSolver::solve(FIELDS & rhs, GRAD_FIELD_MATS & /* fluxes */)
{
if ((atc_->prescribed_data_manager()->all_fixed(ELECTRON_WAVEFUNCTION))
&& (atc_->prescribed_data_manager()->all_fixed(ELECTRIC_POTENTIAL))) {
return;
}
double norm = 1.0, norm0 = 1.0; // normPrev = 1.0;
DENS_MAT nPrev,psiPrev,phiPrev;
DENS_MAT & psi = (atc_->field(ELECTRON_WAVEFUNCTIONS)).set_quantity();
DENS_MAT & phi = (atc_->field(ELECTRIC_POTENTIAL)).set_quantity();
DENS_MAT & E_I = (atc_->field(ELECTRON_WAVEFUNCTION_ENERGIES)).set_quantity();
DENS_MAT & Te = (atc_->field(ELECTRON_TEMPERATURE)).set_quantity();
atc_->set_fixed_nodes();
DENS_MAT Te0 = Te; // save
const double tol = 1.e-4;
int k = 0;
double logRatio = 3;
int maxIter = (int) logRatio;
double base = 2.0;
// temperature relaxation loop
for (int i = 0; i < maxIter ; ++i) {
//double alpha = ((double) i) /( (double) maxIter-1);
//double beta = 0.1;
//alpha = (exp(beta*i)-1.0)/(exp(beta*(maxIter-1))-1.0);
double alpha = pow(base,logRatio-i-1);
// self consistency loop
int j = 0; // for storage of last iterate
for (j = 0; j < maxConsistencyIter_ ; ++j) {
// compute eigen-values and vectors
atc_->set_fixed_nodes();
Te = alpha*Te0;
schrodingerSolver_->solve(atc_->fields());
for (int l = 0; l < nNodes_; l++) {
int count = 0;
double T_e = Te(l,0);
for (int m = 0; m < nNodes_; m++) {
double f = fermi_dirac(E_I(m,0), T_e);
if (f > tol) count++;
}
}
// compute charge density
DENS_MAN & n = atc_->field(ELECTRON_DENSITY);
//(n.quantity()).print("DENSITY");
atc_->nodal_projection(ELECTRON_DENSITY,physicsModel_,n);
atc_->set_fixed_nodes();
// solve poisson eqn for electric potential
atc_->set_fixed_nodes();
Te = alpha*Te0;
poissonSolver_->solve(atc_->fields(),rhs);
//DENS_MAT dn = n;
//DENS_MAT dpsi = psi;
//DENS_MAT dphi = phi;
if (i == 0 && j==0) {
nPrev = n.quantity();
psiPrev = psi;
phiPrev = phi;
}
//dn -= nPrev;
//dpsi -= psiPrev;
//dphi -= phiPrev;
norm = (n.quantity()-nPrev).norm();
if (i == 0 && j==0) norm0 = (n.quantity()).norm();
//normPrev = norm;
//psi_normPrev = psi_norm;
//phi_normPrev = phi_norm;
nPrev = n.quantity();
psiPrev = psi;
phiPrev = phi;
k++;
if (j > 0 && norm <= tol*norm0) break;
}
// Tmax_ *= 0.5;
}
}
//===================================================================
// SliceSchrodingerPoissonSolver
//===================================================================
SliceSchrodingerPoissonSolver::SliceSchrodingerPoissonSolver(
/*const*/ ATC_Coupling * atc,
SchrodingerSolver * schrodingerSolver,
PoissonSolver * poissonSolver,
const PhysicsModel * physicsModel,
int maxConsistencyIter,
int maxConstraintIter,
int oneDconserve,
double Ef_shift,
double safe_dEf
) :
SchrodingerPoissonSolver(atc,schrodingerSolver,poissonSolver,physicsModel,maxConsistencyIter),
oneDconserve_(oneDconserve),
oneDcoor_(0),
oneDslices_(((SliceSchrodingerSolver *) schrodingerSolver_)->slices()),
oneDdxs_(((SliceSchrodingerSolver *) schrodingerSolver_)->dxs())
{
Ef_shift_=Ef_shift;
safe_dEf_=safe_dEf;
maxConstraintIter_=maxConstraintIter;
EfHistory_.reset(oneDslices_.size(),2);
}
//--------------------------------------------------------------------------
void SliceSchrodingerPoissonSolver::solve(FIELDS & rhs, GRAD_FIELD_MATS & fluxes)
{
const double tol = 1.e-4; // tolerance on consistency & constraint
double norm = 1.0, norm0 = 1.0;
DENS_MAT nPrev;
DENS_MAT & n = (atc_->field(ELECTRON_DENSITY)).set_quantity();
DENS_MAT & phi = (atc_->field(ELECTRIC_POTENTIAL)).set_quantity();
// fermi energy
DENS_MAT & Ef = (atc_->field(FERMI_ENERGY)).set_quantity();
Ef.reset(nNodes_,1);
int nslices = oneDslices_.size();
Array2D<double> nHistory(nslices,2);
// target for constraint
double target = 0.0;
set<int> & slice = oneDslices_(0); // note assume first slice is fixed
if (oneDconserve_ == ONED_FLUX) atc_->set_sources();
DENS_MAT & nSource = (atc_->source(ELECTRON_DENSITY)).set_quantity();
for (set<int>::const_iterator iset = slice.begin(); iset != slice.end(); iset++) {
if (oneDconserve_ == ONED_FLUX) target += nSource(*iset,0);
else target += n(*iset,0);
}
target /= slice.size();
#ifdef VERBOSE
if (oneDconserve_ == ONED_FLUX) {
if (target > 0) ATC::LammpsInterface::instance()->print_msg_once(" influx target "+ to_string(target));
else ATC::LammpsInterface::instance()->print_msg_once(" efflux target "+ to_string(target));
}
#endif
// A: self consistency loop between Phi and n(psi_i)
double error = 1.0;
for (int i = 0; i < maxConsistencyIter_ ; ++i) {
atc_->set_fixed_nodes();
if (! atc_->prescribedDataMgr_->all_fixed(ELECTRIC_POTENTIAL) )
poissonSolver_->solve(atc_->fields(),rhs);
if (! atc_->prescribedDataMgr_->all_fixed(ELECTRON_DENSITY) ) {
// iterate on Ef
//if (i==0) Ef = -1.0*phi;// E ~ -|e| \Phi, charge of electron e = 1
Ef = -1.0*phi;
Ef +=Ef_shift_;
// B: conservation constraint
for (int j = 0; j < maxConstraintIter_ ; ++j) {
schrodingerSolver_->solve(atc_->fields()); // n(E_f)
atc_->set_fixed_nodes();
error = update_fermi_energy(target,(j==0),fluxes);// root finder
#ifdef VERBOSE
ATC::LammpsInterface::instance()->print_msg_once(to_string(i)+":"+to_string(j)+" constraint_error "+to_string(error)+" / "+to_string(tol*target)+"\n");
#endif
// exit condition based on constraint satisfaction
if (error < tol*fabs(target)) break;
} // loop j : flux constraint
// error based on change in field (Cauchy convergence)
if (i == 0) {
norm = norm0 = n.norm();
}
else {
DENS_MAT dn = n;
dn -= nPrev;
norm = dn.norm();
}
nPrev = n;
#ifdef VERBOSE
#if 0
if (i > 0) ATC::LammpsInterface::instance()->print_msg_once(to_string(i)+" density_change: "+to_string(norm)+" / "+to_string(norm0));
else ATC::LammpsInterface::instance()->print_msg_once("initial norm "+to_string(norm));
#endif
#endif
if (i > 0 && norm <= tol*norm0 && error < tol) break;
}
} // loop i : self consistency
}
//--------------------------------------------------------
// update fermi energy
//--------------------------------------------------------
double SliceSchrodingerPoissonSolver::update_fermi_energy
(double target, bool first, GRAD_FIELD_MATS & fluxes)
{
DENS_MAT & Ef = (atc_->field(FERMI_ENERGY)).set_quantity();
DENS_MAT & n = (atc_->field(ELECTRON_DENSITY)).set_quantity();
DENS_MAT & phi = (atc_->field(ELECTRIC_POTENTIAL)).set_quantity();
const DENS_MAT * y = &n;
if (oneDconserve_ == ONED_FLUX) { // compute J_x
Array2D <bool> rhsMask(NUM_FIELDS,NUM_FLUX); rhsMask = false;
rhsMask(ELECTRON_DENSITY,FLUX) = true;
//#define WIP_REJ
atc_->compute_flux(rhsMask,atc_->fields_,fluxes,physicsModel_);
y = & ( fluxes[ELECTRON_DENSITY][oneDcoor_] );
}
BCS bcs;
double error = 0;
// slice
for (int islice = 0; islice < oneDslices_.size(); islice++) {
#ifdef VERBOSE
std::string cStr(" conserved ");
std::string Estr(" Ef");
#endif
set<int> & slice = oneDslices_(islice);
int nSlice = slice.size();
atc_->prescribedDataMgr_->bcs(ELECTRON_WAVEFUNCTION,slice,bcs,true);
const BC_SET & bc = bcs[0];
int nFixed = bc.size();
if (nFixed == nSlice) continue; // skip if all fixed
double Y = 0.0, X = 0.0;
double nAve = 0., phiAve = 0.;
for (set<int>::const_iterator iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
X += Ef(gnode,0);
Y += (*y)(gnode,0);
nAve += n(gnode,0);
phiAve += phi(gnode,0);
}
X /= nSlice;
Y /= nSlice;
nAve /= nSlice;
phiAve /= nSlice;
// now adjust Ef for each slice
double dY = Y - EfHistory_(islice,0);
double dX = X - EfHistory_(islice,1);
double err = target - Y;
if (target*Y < -zero_tol*target) {
#ifdef VERBOSE
cStr = " opp. SIGNS";
#else
ATC::LammpsInterface::instance()->print_msg_once("WARNING: slice "+to_string(islice)+" target and quantity opposite signs "+to_string(Y));
#endif
}
error += fabs(err);
double dEf = 0.;
if (first) {
dEf = (err < 0) ? -safe_dEf_ : safe_dEf_;
}
else {
if (fabs(dY) < zero_tol*dX) throw ATC_Error("zero increment in conserved field on slice:"+to_string(islice));
dEf = err / dY * dX;
if (fabs(dEf) > safe_dEf_) {
dEf = safe_dEf_* dEf / fabs(dEf);
#ifdef VERBOSE
Estr = " !!";
#else
ATC::LammpsInterface::instance()->print_msg_once("WARNING: slice "+to_string(islice)+ " large Delta E_f "+to_string(dEf));
#endif
}
}
for (set<int>::const_iterator iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
Ef(gnode,0) += dEf;
}
EfHistory_(islice,0) = Y;
EfHistory_(islice,1) = X;
if ( std::isnan(Y) ) throw ATC_Error("target on slice is not a number");
#ifdef VERBOSE
ATC::LammpsInterface::instance()->print_msg_once(" slice"+to_string(islice,2) +cStr+to_string(4,Y/target) +Estr+to_string(4,X)+" n"+to_string(5,nAve)+" phi"+to_string(4,phiAve));
//ATC::LammpsInterface::instance()->print_msg_once(" slice "+to_string(islice) +cStr+to_string(4,Y/target) +" E_f"+to_string(4,X)+dEstr+to_string(4,X-EfHistory_(std::max(0,islice-1),1))+" n"+to_string(4,nAve)+" phi"+to_string(4,phiAve)+" "+to_string(nFixed)+" dn "+to_string(4,dnAve)+" dphi "+to_string(4,dphiAve));
#endif
} // loop slice
return error;
}
//===================================================================
// GlobalSliceSchrodingerPoissonSolver
//===================================================================
GlobalSliceSchrodingerPoissonSolver::GlobalSliceSchrodingerPoissonSolver(
/*const*/ ATC_Coupling * atc,
SchrodingerSolver * schrodingerSolver,
PoissonSolver * poissonSolver,
const PhysicsModel * physicsModel,
int maxConsistencyIter,
int maxConstraintIter,
int oneDconserve,
double Ef0,
double alpha,
double safe_dEf,
double tol,
double mu, double D
) :
SliceSchrodingerPoissonSolver(atc,schrodingerSolver,poissonSolver,physicsModel,maxConsistencyIter,maxConstraintIter,oneDconserve,0,0),
solver_(nullptr),
mobility_(mu),diffusivity_(D)
{
Ef0_ = Ef0;
alpha_ = alpha;
safe_dEf_ = safe_dEf;
if (safe_dEf_ < 1.e-20) throw ATC_Error("safe dE_f must be positive");
ATC::LammpsInterface::instance()->print_msg("mobility:"+to_string(mobility_)+" diffusivity:"+to_string(diffusivity_));
tol_ = tol;
nslices_ = oneDslices_.size();
sliceSize_ = (oneDslices_(0)).size();
nNodes_ = nslices_*sliceSize_;
flux_.reset(nNodes_);
J_.reset(nslices_);
//nfixed_ = 2;
nfixed_ = 1;
nfreeSlices_ = nslices_-nfixed_;
nLambda_ = nslices_-1;
lambda_.reset(nLambda_);
dJ_.reset(nLambda_);
F_.reset(nslices_);
Phi_.reset(nslices_);
n_.reset(nslices_);
// form stiffness, lhs dirichlet bc, rhs homogeneous neumann bc
//int m = nfreeSlices_;
int m = nLambda_;
DENS_MAT A(m,m);
for (int i = 1; i < m; ++i) {
A(i,i) = -2;
if (i>0) A(i,i-1) = 1;
if (i<m-1) A(i,i+1) = 1;
}
A(0,0) = -2;
A(0,1) = 1;
A(m-1,m-1) = -2;
A(m-1,m-2) = 1;
//if (nfixed_ == 1) { A(m-1,m-1) = -1; }
double dx = oneDdxs_(0);
A *= 1./dx;
A.print("stiffness",4);
SPAR_MAT K(A);
K_ = K;
// form gradient (account for lhs bc)
int n = nslices_;
DENS_MAT B(m,n);
//for (int i = 0; i < m-1; ++i) {
for (int i = 0; i < m; ++i) {
B(i,i) =-1;
B(i,i+1) = 1; //B(i,i+2) = 1;
}
if (nfixed_ == 1) {
B(m-1,n-2) = -1;
B(m-1,n-1) = 1;
}
B.print("gradient",4);
SPAR_MAT G(B);
G_ = G;
DENS_MAT C(nNodes_,nNodes_);
// local to ATC nodemap: k --> gnode = *iset
int k = 0;
set<int>::const_iterator iset;
for (int islice = 0; islice < nslices_; islice++) {
set<int> & slice = oneDslices_(islice);
for (iset = slice.begin(); iset != slice.end(); iset++) {
double v = 0.5/dx;
if ( k < sliceSize_ || k+1 > (nslices_-1)*sliceSize_ ) v *=2.0;
if (islice > 0) { C(k,k-sliceSize_) += v; }
else { C(k,k) += v; }
if (islice < nslices_-1) { C(k,k+sliceSize_) -= v; }
else { C(k,k) -= v; }
k++;
}
}
//C.print("2D gradient",4);
SPAR_MAT G2(C);
G2_ = G2;
solver_ = new LinearSolver(K_); // for lambda
rhsMask_.reset(NUM_FIELDS,NUM_FLUX); rhsMask_ = false;
rhsMask_(ELECTRON_DENSITY,FLUX) = true;
// report
if (nfixed_ ==2)
ATC::LammpsInterface::instance()->print_msg_once("schrodinger-poisson solver: Dirichlet INLET, Dirichlet; OUTLET");
else if (nfixed_ ==1)
ATC::LammpsInterface::instance()->print_msg_once("schrodinger-poisson solver: Dirichlet INLET, Neumann; OUTLET");
else
ATC_Error("schrodinger-poisson solver:too many fixed");
}
GlobalSliceSchrodingerPoissonSolver::~GlobalSliceSchrodingerPoissonSolver(void) {
if (solver_) delete solver_;
}
//--------------------------------------------------------------------------
void GlobalSliceSchrodingerPoissonSolver::solve(FIELDS & rhs, GRAD_FIELD_MATS & /* fluxes */)
{
const DENS_MAT & phi = (atc_->fields_[ELECTRIC_POTENTIAL]).quantity();
const DENS_MAT & n = (atc_->fields_[ELECTRON_DENSITY] ).quantity();
DENS_MAT & Ef = (atc_->field(FERMI_ENERGY)).set_quantity();
Ef.reset(phi.nRows(),1);
norm_ = norm0_ = 1.0;
for (int i = 0; i < maxConstraintIter_ ; ++i) {
atc_->set_fixed_nodes();
if (! atc_->prescribedDataMgr_->all_fixed(ELECTRIC_POTENTIAL) ) {
poissonSolver_->solve(atc_->fields(),rhs);
}
else {
ATC::LammpsInterface::instance()->print_msg_once("WARNING: phi is fixed");
}
if (i == 0) { report(0); }
if (! atc_->prescribedDataMgr_->all_fixed(ELECTRON_DENSITY) ) {
update_fermi_level(); // update Ef = Ef0 +lambda
schrodingerSolver_->solve(atc_->fields()); // updates n(E_f)
//exponential_electron_density(); // surrogate
compute_flux(n,phi); // compute J(n,phi) & dJ_
solver_->solve(lambda_,dJ_); // conservation constraint
//lambda_.print("lambda");
//lambda_.print("[[J}}");
}
else {
ATC::LammpsInterface::instance()->print_msg_once("WARNING: rho is fixed");
}
norm_ = dJ_.norm();
report(i+1);
if (i == 0 && norm_ > tol_) norm0_ = norm_;
else { if (norm_ < tol_*norm0_) break; }
}
}
//--------------------------------------------------------------------------
void GlobalSliceSchrodingerPoissonSolver::exponential_electron_density()
{
std::cout << "******************HACK******************\n";
DENS_MAT & n = (atc_->fields_[ELECTRON_DENSITY] ).set_quantity();
DENS_MAT & Ef = (atc_->field(FERMI_ENERGY)).set_quantity();
double T = 300;
double n0 = 1.e-2;
set<int>::const_iterator iset;
for (int islice = 0; islice < nslices_; islice++) {
set<int> & slice = oneDslices_(islice);
double aveE_f = 0.0;
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
aveE_f += Ef(gnode,0);
}
aveE_f /= slice.size();
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
//std::cout << phi(gnode,0)+aveE_f << "\n";
//n(gnode,0) = -n0*exp(-(phi(gnode,0)+aveE_f)/(kBeV_*T));
//n(gnode,0) = -n0*exp((-phi(gnode,0))/(kBeV_*T));
//n(gnode,0) = -n0*exp(aveE_f/(kBeV_*T));
//n(gnode,0) = aveE_f+0.01;
//n(gnode,0) = aveE_f;
//n(gnode,0) = phi(gnode,0);
//n(gnode,0) = -n0*(phi(gnode,0)+aveE_f)/(kBeV_*T);
n(gnode,0) = -n0*(aveE_f)/(kBeV_*T);
}
}
}
//--------------------------------------------------------------------------
void GlobalSliceSchrodingerPoissonSolver::report(int i)
{
const DENS_MAT & phi = (atc_->fields_[ELECTRIC_POTENTIAL]).quantity();
const DENS_MAT & n = (atc_->fields_[ELECTRON_DENSITY] ).quantity();
const DENS_MAT & Ef = (atc_->field(FERMI_ENERGY)).quantity();
set<int>::const_iterator iset;
for (int islice = 0; islice < nslices_; islice++) {
set<int> & slice = oneDslices_(islice);
double Phi = 0.0;
double N = 0.0;
double EF = 0.0;
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
Phi += phi(gnode,0);
N += n(gnode,0);
EF += Ef(gnode,0);
}
Phi /= slice.size();
Phi_(islice) = Phi; // average potential
N /= slice.size();
n_(islice) = N; // average electron density
EF /= slice.size();
F_(islice) = EF; // average Fermi level
}
stringstream header;
header << "\n";
header << "#----------------------------------------------------------------------\n";
header << "# [[J]] lambda E_f phi n J\n";
header << "#----------------------------------------------------------------------\n";
if (i == 0) {
ATC::LammpsInterface::instance()->write_file("slice.dat",header.str());
}
stringstream ss;
ss << "\n";
// first slice (fixed E_F)
double dJ0 = J_(1)-J_(0);
ss << to_string(1,2) << "*" << to_string(6,dJ0) << " " << to_string(6,0.) << " " << to_string(6,F_(0)) << " " << to_string(6,Phi_(0)) << " " << to_string(6,n_(0)) << " " << to_string(6,J_(0)) << "\n";
// interior
for (int j = 1; j < nslices_-1; ++j) {
ss << to_string(j+1,2) << " " << to_string(6,dJ_(j-1)) << " " << to_string(6,lambda_(j-1)) << " " << to_string(6,F_(j)) << " " << to_string(6,Phi_(j)) << " " << to_string(6,n_(j)) << " " << to_string(6,J_(j)) << "\n";
}
// last slice (fixed E_F)
double dJn = J_(nslices_-1)-J_(nslices_-2);
int j = nslices_-1;
double lambdaN = 0.;
std::string space = "*";
if (nfixed_ == 1) {
lambdaN = lambda_(nslices_-2);
space = " ";
}
ss << to_string(nslices_,2) << space << to_string(6,dJn) << " " << to_string(6,lambdaN) << " " << to_string(6,F_(j)) << " " << to_string(6,Phi_(j)) << " " << to_string(6,n_(j)) << " " << to_string(6,J_(j)) << "\n";
stringstream is;
is << "\n# iteration: " << to_string(i)+"/ "+to_string(maxConstraintIter_)+" constraint norm:"+to_string(6,norm_/norm0_) << " " << nslices_ << " slices";
ATC::LammpsInterface::instance()->print_msg(is.str()+header.str()+ss.str());
ATC::LammpsInterface::instance()->write_file("slice.dat",ss.str()+is.str()+"\n",std::ofstream::app);
}
//--------------------------------------------------------------------------
void GlobalSliceSchrodingerPoissonSolver::compute_flux(
const DENS_MAT & n, const DENS_MAT & phi)
{
DENS_VEC f(nNodes_);
DENS_VEC gradphi(nNodes_);
DENS_VEC gradn(nNodes_);
int k = 0;
set<int>::const_iterator iset;
// grad phi
for (int islice = 0; islice < nslices_; islice++) {
set<int> & slice = oneDslices_(islice);
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
f(k) = phi(gnode,0);
k++;
}
}
//f.print("phi");
gradphi = G2_*f;
//gradphi.print("grad phi");
k = 0;
// grad n
for (int islice = 0; islice < nslices_; islice++) {
set<int> & slice = oneDslices_(islice);
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
f(k) = n(gnode,0);
k++;
}
}
//f.print("n");
gradn = G2_*f;
////gradn.print("grad n");
flux_.reset(nNodes_);
for (k = 0; k < nNodes_; k++) {
flux_(k) = -mobility_*f(k)*gradphi(k)-diffusivity_*gradn(k);
}
//flux_.print("flux");
// per slice flux and diference
k = 0;
for (int islice = 0; islice < nslices_; islice++) {
set<int> & slice = oneDslices_(islice);
J_(islice) = 0;
for (iset = slice.begin(); iset != slice.end(); iset++) {
J_(islice) += flux_(k);
k++;
}
J_(islice) /= slice.size();
//std::cout << islice << " J " << J_(islice) << "\n";
}
//J_.print("J");
dJ_ = G_*J_;
}
//--------------------------------------------------------------------------
void GlobalSliceSchrodingerPoissonSolver::update_fermi_level()
{
DENS_MAT & Ef = (atc_->field(FERMI_ENERGY) ).set_quantity();
DENS_MAT & phi = (atc_->field(ELECTRIC_POTENTIAL)).set_quantity();
DENS_MAT & n = (atc_->field(ELECTRON_DENSITY) ).set_quantity();
set<int>::const_iterator iset;
for (int islice = 0; islice < nslices_; islice++) {
set<int> & slice = oneDslices_(islice);
double Phi = 0.;
double N = 0.;
//F_(islice) = Ef0_;
if (islice > 0 && islice < nslices_-1) {
F_(islice) += alpha_*lambda_(islice-1);
}
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
Phi += phi(gnode,0);
N += n(gnode,0);
}
Phi /= slice.size();
Phi_(islice) = Phi; // average potential
N /= slice.size();
n_(islice) = N; // average electron density
//F_(j) += min(fabs(alpha_*lambda),safe_dEf_)*sgn(lambda);
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
Ef(gnode,0) = F_(islice);
}
}
//Ef.print("Ef");
}
};
|