1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
|
#ifndef SPARSEMATRIX_INL_H
#define SPARSEMATRIX_INL_H
#include "mpi.h"
#include "DenseVector.h"
namespace ATC_matrix {
template <typename T>
TRI_COORD<T>::TRI_COORD(INDEX row, INDEX col) : i(row), j(col) {}
template <typename T>
TRI_COORD<T>::TRI_COORD(INDEX row, INDEX col, T val, bool add_to)
: i(row), j(col), v(val), add(add_to) {}
//-----------------------------------------------------------------------------
// default constructor - creates an empty sparsematrix with specified size
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T>::SparseMatrix(INDEX rows, INDEX cols)
: _val(nullptr), _ia(nullptr), _ja(nullptr), _size(0), _nRowsCRS(0), hasTemplate_(false),
_nRows(rows),_nCols(cols) {}
//-----------------------------------------------------------------------------
// copy constructor
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T>::SparseMatrix(const SparseMatrix<T>& C)
: Matrix<T>(), _val(nullptr), _ia(nullptr), _ja(nullptr), hasTemplate_(false)
{
_copy(C);
}
//-----------------------------------------------------------------------------
// copy constructor - converts from DenseMatrix
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T>::SparseMatrix(const DenseMatrix<T>& C)
: Matrix<T>(), _val(nullptr), _ia(nullptr), _ja(nullptr), hasTemplate_(false)
{
reset(C);
}
//-----------------------------------------------------------------------------
// constructor - creates a sparse matrix given an array of row indeces,
// an array of col indeces, and an array of nonzero values.
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T>::SparseMatrix(INDEX* rows, INDEX* cols, T* vals,
INDEX size, INDEX nRows, INDEX nCols, INDEX nRowsCRS)
: hasTemplate_(true)
{
_val = vals;
_ia = rows;
_ja = cols;
_size = size;
_nRows = nRows;
_nCols = nCols;
_nRowsCRS = nRowsCRS;
}
//-----------------------------------------------------------------------------
// assigns internal storage for CRS
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::_create(INDEX size, INDEX nrows)
{
_size = size;
_nRowsCRS = nrows;
// assign memory to hold matrix
try
{
_val = (_size && nrows) ? new T [_size] : nullptr;
_ia = (_size && nrows) ? new INDEX [_nRowsCRS+1] : nullptr;
_ja = (_size && nrows) ? new INDEX [_size] : nullptr;
}
catch (std::exception &e)
{
std::cout << "Could not allocate SparseMatrix of "<< _size << " nonzeros.\n";
ERROR_FOR_BACKTRACE
exit(EXIT_FAILURE);
}
if (!_ia) return;
// automatically handle the ends of rowpointer
*_ia = 0; // first non-zero is the zero index
_ia[_nRowsCRS] = _size; // last row pointer is the size
}
//-----------------------------------------------------------------------------
// cleans up internal storage, but retains nRows & nCols
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::_delete()
{
std::vector<TRI_COORD<T> >().swap(_tri); // completely deletes _tri
if (_val) delete [] _val;
if (_ia) delete [] _ia;
if (_ja) delete [] _ja;
_size = _nRowsCRS = 0;
_val = nullptr;
_ia = _ja = nullptr;
}
//-----------------------------------------------------------------------------
// full memory copy of C into this
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::_copy(const SparseMatrix<T> &C)
{
compress(C);
_delete();
_create(C.size(), C._nRowsCRS);
if (_size) {
std::copy(C._val, C._val+_size, _val);
std::copy(C._ja, C._ja+_size, _ja);
}
if (_nRowsCRS) {
std::copy(C._ia, C._ia+_nRowsCRS+1, _ia);
}
_nCols = C._nCols;
_nRows = C._nRows;
if (_nCols > 0 && _nRows > 0) hasTemplate_ = true; // needs if since map seems to call the copy instead of the default constructor
}
// this version is accessible to derived classes
template<typename T>
void SparseMatrix<T>::copy(const SparseMatrix<T> &C)
{
_copy(C);
}
//----------------------------------------------------------------------------
// general sparse matrix assignment
//----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::_set_equal(const Matrix<T> &r)
{
this->resize(r.nRows(), r.nCols());
const Matrix<T> *ptr_r = &r;
const SparseMatrix<T> *s_ptr = dynamic_cast<const SparseMatrix<T>*>(ptr_r);
if (s_ptr) this->reset(*s_ptr);
else if (dynamic_cast<const DiagonalMatrix<T>*>(ptr_r))
for (INDEX i=0; i<r.size(); i++) set(i,i,r[i]);
else if (dynamic_cast<const DenseMatrix<T>*>(ptr_r)) this->reset(r);
else
{
std::cout <<"Error in general sparse matrix assignment\n";
exit(1);
}
}
// General flat index by value operator (by nth nonzero)
template <typename T> inline T SparseMatrix<T>::operator[](INDEX i) const
{
VICK(i); return _val[i];
}
// General flat index by reference operator (by nth nonzero)
template <typename T> inline T& SparseMatrix<T>::operator[](INDEX i)
{
VICK(i); return _val[i];
}
template<typename T>
T SparseMatrix<T>::_zero = T(0);
//-----------------------------------------------------------------------------
// triplet comparison operator returns true if x < y
//-----------------------------------------------------------------------------
template <typename T>
bool triplet_comparision(const TRI_COORD<T> &x, const TRI_COORD<T> &y)
{
const bool row_less = (x.i) < (y.i);
const bool row_equal = (x.i) == (y.i);
const bool col_less = (x.j) < (y.j);
return (row_less || (row_equal && col_less));
}
//-----------------------------------------------------------------------------
// triplet comparison operator returns true if x == y
//-----------------------------------------------------------------------------
template <typename T>
bool triplets_equal(const TRI_COORD<T> &x, const TRI_COORD<T> &y)
{
return x.i==y.i && x.j==y.j;
}
//-----------------------------------------------------------------------------
// multiply sparse matrix by a vector
//-----------------------------------------------------------------------------
template<typename T>
DenseVector<T> operator*(const SparseMatrix<T> &A, const Vector<T>& x)
{
DenseVector<T> y(A.nRows(), true);
A.MultMv(x, y);
return y;
}
//-----------------------------------------------------------------------------
// multiply a vector by a sparse matrix
//-----------------------------------------------------------------------------
template<typename T>
DenseVector<T> operator*(const Vector<T>& x, const SparseMatrix<T> &A)
{
return A.transMat(x);
}
//-----------------------------------------------------------------------------
// multiply sparse matrix by dense matrix
//-----------------------------------------------------------------------------
template<typename T>
DenseMatrix<T> operator*(const SparseMatrix<T> &A, const Matrix<T>& D)
{
DenseMatrix<T> C(A.nRows(), D.nCols(), true); // initialized to zero
A.MultAB(D, C);
return C;
}
//-----------------------------------------------------------------------------
// multiply sparse matrix by a diagonal matrix - scales each column
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T> operator*(const SparseMatrix<T> &A, const DiagonalMatrix<T>& D)
{
GCK(A, D, A.nCols()!=D.nRows(),"SparseMatrix * DiagonalMatrix")
SparseMatrix<T> C(A); // C has same sparcity as A
// C(i,j) = A(i,k) * D(k, j) * j==k
INDEX i, ij;
for (i=0; i<A._nRowsCRS; i++)
for (ij=A._ia[i]; ij<A._ia[i+1]; ij++)
C[ij] = A._val[ij]*D(A._ja[ij],A._ja[ij]);
return C;
}
//-----------------------------------------------------------------------------
// multiplies two sparse matrices - assumes their output is sparse
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T> operator*(const SparseMatrix<T> &A, const SparseMatrix<T> &B)
{
SparseMatrix<T> At(A.transpose());
SparseMatrix<T>::compress(B);
GCK(A, B, A.nCols()!=B.nRows(), "SparseMatrix * SparseMatrix");
SparseMatrix<T> C(A.nRows(), B.nCols());
if (At.empty() || B.empty()) return C;
INDEX k, ki, kj;
INDEX K = std::min(At._nRowsCRS, B._nRowsCRS);
for (k=0; k<K; k++) // loop over rows of A or B (smallest)
for (ki=At._ia[k]; ki<At._ia[k+1]; ki++) // loop over row nonzeros of A
for (kj=B._ia[k]; kj<B._ia[k+1]; kj++) // loop over row nonzeros of B
C.add(At._ja[ki], B._ja[kj], At[ki]*B[kj]); // C(i,j) = At(k,i)*B(k, j)
C.compress();
return C;
}
//-----------------------------------------------------------------------------
// returns the first row number with a nonzero entry or -1 if no rows
//-----------------------------------------------------------------------------
template<typename T>
int SparseMatrix<T>::_first_nonzero_row_crs() const
{
if (!_nRowsCRS) return -1;
INDEX r;
for (r=0; r<_nRowsCRS; r++)
if (_ia[r+1]>0) return r;
return -1;
}
//-----------------------------------------------------------------------------
// converts T to CRS
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::compress(const SparseMatrix<T> &C)
{
const_cast<SparseMatrix<T>*>(&C)->compress();
}
//-----------------------------------------------------------------------------
// merges all the _tri triples with CRS storage
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::compress()
{
if (_tri.empty()) return;
// Sort and find the number of unique triplets.
// Triplet values will all be not present in existing CRS structure.
const INDEX nUnique = CountUniqueTriplets();
// Max number of rows in new CRS structure.
const INDEX nRows = std::max((INDEX)_tri.back().i+1, _nRowsCRS);
// make a new CRS structure
INDEX *ia = new INDEX [nRows+1];
INDEX *ja = new INDEX [nUnique];
T *val = new T [nUnique];
// Set first and last row ptr to 0 and nnz respectively.
// Set all else to a flagvalue MAX_UNSIGNED (~0).
ia[0] = 0;
INDEX i;
for (i=1; i<nRows; i++) ia[i]=~0; // ~0 is max(INDEX)
ia[nRows] = nUnique;
INDEX crs_pt, crs_row;
unsigned tri_ct; // must be unsigned to interface with std::vector without warnings
// Get the first CRS and triplet coordinates (if they exist).
TRI_COORD<T> nextCRS, nextTRI(_tri[0]), next;
int first_row = _first_nonzero_row_crs();
if (first_row != -1) nextCRS = TRI_COORD<T>(first_row, _ja[0], _val[0]);
// merge sorted triplets into a new CRS structure
crs_pt = crs_row = tri_ct = 0; // initialize counters
for (i=0; i<nUnique; i++)
{
// is the next non-zero in the new triplet vector
if (tri_ct < _tri.size()
&& (triplet_comparision(nextTRI, nextCRS) || crs_pt>=_size)) {
next = nextTRI;
// advance the triplet counter, and skip voided TRIPLET entries
do tri_ct++;
while ( tri_ct<_tri.size() && _tri[tri_ct].j == ~0 );
// if not at the end of the vector, set the next triplet
if (tri_ct<_tri.size()) nextTRI = _tri[tri_ct];
}
// is the next nonzero in the old CRS data
else if (crs_pt < _size) {
next = nextCRS;
// Advance the CRS counter, don't set next if we are at the end.
if (++crs_pt < _size) {
// advance to the row corresponding to this value
while (crs_pt >= _ia[crs_row+1]) {
crs_row++;
}
nextCRS = TRI_COORD<T>(crs_row, _ja[crs_pt], _val[crs_pt]);
}
}
else std::cout << "SparseMatrix - Error in compressing CRS\n";
// Add next to the new CRS structure.
// Is this a new row (is j>0 and is ja[j] == 0)?
if (ia[next.i]==~0) ia[next.i] = i;
ja[i] = next.j;
val[i] = next.v;
}
// sweep backwards through row pointers and check for skipped rows
for (i=nRows-1; i>0; i--) ia[i] = (ia[i]==~0) ? ia[i+1] : ia[i];
_delete();
_val = val;
_ia = ia;
_ja = ja;
_size = nUnique;
_nRowsCRS = nRows;
hasTemplate_=true;
}
//-----------------------------------------------------------------------------
// Sorts the triplets, condenses duplicates, and returns the # of unique values
//-----------------------------------------------------------------------------
template<typename T>
INDEX SparseMatrix<T>::CountUniqueTriplets()
{
if (_tri.empty()) return _size;
std::sort(_tri.begin(), _tri.end(), triplet_comparision<T>);
INDEX nUnique=1 + _size;
typename std::vector<TRI_COORD<T> >::reverse_iterator t;
// Loop backwards over all new triplets.
for (t = _tri.rbegin(); t+1!=_tri.rend(); ++t) {
// If this triplet is the same as the preceding one.
if (triplets_equal(*(t+1), *t)) {
if (t->add) (t+1)->v += t->v; // Add to previous
else (t+1)->v = t->v; // Replace previous -- DOES THIS WORK?
t->j = ~0; // Void this entry's column pointer
}
else nUnique++;
}
return nUnique;
}
//-----------------------------------------------------------------------------
// Checks if a value has been set
//-----------------------------------------------------------------------------
template<typename T>
bool SparseMatrix<T>::has_entry(INDEX i, INDEX j) const
{
if (has_entry_compressed(i,j)) return true;
if (has_entry_uncompressed(i,j)) return true;
return false;
}
template<typename T>
bool SparseMatrix<T>::has_entry_uncompressed(INDEX i, INDEX j) const
{
for (unsigned k=0; k<_tri.size() ; k++) {
if (_tri[k].i == i && _tri[k].j == j) return true;
}
return false;
}
template<typename T>
bool SparseMatrix<T>::has_entry_compressed(INDEX i, INDEX j) const
{
if (_size == 0) return false;
if (i >= _nRowsCRS) return false;
if (_ia[i] < _ia[i+1]) {
return -1 < ATC_Utility::search_sorted(_ja, j, _ia[i], _ia[i+1]);
}
return false;
}
//-----------------------------------------------------------------------------
// check if the matrix has been compressed at least once
//-----------------------------------------------------------------------------
template<typename T>
bool SparseMatrix<T>::has_template(void) const
{
return hasTemplate_;
}
//-----------------------------------------------------------------------------
// Index by copy operator - return zero if not found
//-----------------------------------------------------------------------------
template<typename T>
T SparseMatrix<T>::operator()(INDEX i, INDEX j) const
{
MICK(i,j); // Matrix Index ChecKing
compress(*this);
if (i>=_nRowsCRS || _ia[i+1]==_ia[i]) return 0.0;
INDEX f = std::lower_bound(_ja+_ia[i], _ja+_ia[i+1]-1, j) - _ja;
if (f>=_ia[i] && f<_ia[i+1] && _ja[f] == j) return _val[f];
return 0.0;
}
//-----------------------------------------------------------------------------
// Index by reference operator - add to _tri if not found
//-----------------------------------------------------------------------------
template<typename T>
T& SparseMatrix<T>::operator()(INDEX i, INDEX j)
{
MICK(i,j); // Matrix Index ChecKing
compress(*this);
if (i < _nRowsCRS && _ia[i+1]>_ia[i]) {
INDEX f = std::lower_bound(_ja+_ia[i], _ja+_ia[i+1]-1, j) - _ja;
if (f>=_ia[i] && f<_ia[i+1] && _ja[f] == j) return _val[f];
}
// NEVER use index operator as LHS to modify values not already in the
// sparcity pattern - the crude check below will only catch this on the
// second infraction.
if (_zero != T(0)) std::cout << "Use add or set for SparseMatrix\n";
return _zero;
}
//-----------------------------------------------------------------------------
// Sets (i,j) to value
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::set(INDEX i, INDEX j, T v)
{
MICK(i,j); // Matrix Index ChecKing
if (i < _nRowsCRS)
{
const int loc = ATC_Utility::search_sorted(_ja, j, _ia[i], _ia[i+1]);
if (loc >=0 )
{
_val[loc] = v;
return;
}
}
_tri.push_back(TRI_COORD<T>(i,j,v,false));
}
//-----------------------------------------------------------------------------
// Adds (i,j) to value
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::add(INDEX i, INDEX j, T v)
{
MICK(i,j); // Matrix Index ChecKing
if (i < _nRowsCRS)
{
const int loc = ATC_Utility::search_sorted(_ja, j, _ia[i], _ia[i+1]);
if (loc >=0 )
{
_val[loc] += v;
return;
}
}
_tri.push_back(TRI_COORD<T>(i,j,v,true));
}
//-----------------------------------------------------------------------------
// returns a triplet value of the ith nonzero
//-----------------------------------------------------------------------------
template<typename T>
TRIPLET<T> SparseMatrix<T>::triplet(INDEX i) const
{
compress(*this);
if (i >= _ia[_nRowsCRS]) {
gerror("ERROR: tried indexing triplet of sparse matrix beyond range");
}
INDEX row(std::lower_bound(_ia, _ia+_nRowsCRS, i)-_ia);
row -= _ia[row] != i;
return TRIPLET<T>(row, _ja[i], _val[i]);
}
//-----------------------------------------------------------------------------
// full reset - completely wipes out all SparseMatrix data, zero is ignored
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::reset(INDEX rows, INDEX cols, bool /* zero */)
{
_delete();
_nRows = rows;
_nCols = cols;
}
//-----------------------------------------------------------------------------
// resize - changes the _nRows and _nCols without changing anything else if
// the matrix is being enlarged, other wise wipes it
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::resize(INDEX rows, INDEX cols, bool copy)
{
//if (copy) throw;
if (_nRowsCRS>rows) {
_delete();
}
if (copy)
_nRows = rows;
_nCols = cols; // a check on this would be expensive
}
//-----------------------------------------------------------------------------
// get sparsity from DenseMatrix, if TOL < 0, then only zero values are added
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::reset(const DenseMatrix<T>& D, double TOL)
{
_delete(); // clears all values
// if TOL is specified then TOL = TOL^2 * max(abs(D))^2
if (TOL > 0.0)
{
TOL *= D.maxabs();
TOL *= TOL;
}
_nRows = D.nRows();
_nCols = D.nCols();
for (INDEX i=0; i<D.nRows(); i++)
for (INDEX j=0; j<D.nCols(); j++)
if (D(i,j)*D(i,j) >= TOL) // if TOL wasn't specified then TOL < 0
set(i, j, D(i,j));
compress();
}
//-----------------------------------------------------------------------------
// copy - dangerous: ignores rows & columns
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::copy(const T * /* ptr */, INDEX /* rows */, INDEX /* cols */)
{
std::cout << "SparseMatrix<T>::copy() has no effect.\n";
throw;
}
//-----------------------------------------------------------------------------
// dense_copy - copy to dense matrix
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::dense_copy(DenseMatrix <T> & D ) const
{
SparseMatrix<T>::compress(*this);
D.reset(nRows(),nCols());
for (INDEX i=0; i<_nRowsCRS; i++)
for (INDEX j=_ia[i]; j<_ia[i+1]; j++)
D(i, _ja[j]) = _val[j];
}
template<typename T>
DenseMatrix <T> SparseMatrix<T>::dense_copy(void) const
{
DenseMatrix<T> D;
dense_copy(D);
return D;
}
//-----------------------------------------------------------------------------
// returns true if the matrix has no non-zero elements
//-----------------------------------------------------------------------------
template<typename T>
bool SparseMatrix<T>::empty() const
{
return _size==0 && _tri.empty();
}
//-----------------------------------------------------------------------------
// returns the number of rows specified by the user
//-----------------------------------------------------------------------------
template<typename T>
inline INDEX SparseMatrix<T>::nRows() const
{
return _nRows;
}
//-----------------------------------------------------------------------------
// returns ??????????????????????
//-----------------------------------------------------------------------------
template<typename T>
inline INDEX SparseMatrix<T>::nRowsCRS() const
{
return _nRowsCRS;
}
//-----------------------------------------------------------------------------
// returns the number of columns specified by the user
//-----------------------------------------------------------------------------
template<typename T>
inline INDEX SparseMatrix<T>::nCols() const
{
return _nCols;
}
//-----------------------------------------------------------------------------
// returns the number of non-zeros in the matrix
//-----------------------------------------------------------------------------
template<typename T>
INDEX SparseMatrix<T>::size() const
{
compress(*this);
return _size;
}
//-----------------------------------------------------------------------------
// returns the number of nonzero elements in a row
//-----------------------------------------------------------------------------
template<typename T>
INDEX SparseMatrix<T>::RowSize(INDEX r) const
{
compress(*this);
GCHK(r>=_nRows, "Rowsize: invalid row");
if (r >= _nRowsCRS) return 0;
return _ia[r+1]-_ia[r];
}
//-----------------------------------------------------------------------------
// returns a pointer to the data, causes a compress
//-----------------------------------------------------------------------------
template<typename T>
T* SparseMatrix<T>::ptr() const
{
compress(*this);
return _val;
}
template<typename T>
INDEX* SparseMatrix<T>::rows() const
{
compress(*this);
return _ia;
}
template<typename T>
INDEX* SparseMatrix<T>::cols() const
{
compress(*this);
return _ja;
}
//-----------------------------------------------------------------------------
// returns true if (i,j) falls in the user specified range
//-----------------------------------------------------------------------------
template<typename T>
bool SparseMatrix<T>::in_range(INDEX i, INDEX j) const
{
return i < nRows() && j < nCols();
}
//-----------------------------------------------------------------------------
// assigns this sparsematrix from another one - full memory copy
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T>& SparseMatrix<T>::operator=(const SparseMatrix<T> &C)
{
_delete();
_copy(C);
return *this;
}
//-----------------------------------------------------------------------------
// assigns existing sparsematrix to a value, preserving structure
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T>& SparseMatrix<T>::operator=(const T v)
{
this->set_all_elements_to(v);
return *this;
}
//-----------------------------------------------------------------------------
// scales this sparse matrix by a constant
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::set_all_elements_to(const T &a)
{
compress(*this);
for (INDEX i=0; i<size(); i++) _val[i] = a;
}
//-----------------------------------------------------------------------------
// scales this sparse matrix by a constant
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T>& SparseMatrix<T>::operator*=(const T &a)
{
compress(*this);
for (INDEX i=0; i<size(); i++) _val[i] *= a;
return *this;
}
template<typename T>
SparseMatrix<T>& SparseMatrix<T>::operator*=(const SparseMatrix<T> &a)
{
compress(*this);
Matrix<T>::operator*=(a);
return *this;
}
//-----------------------------------------------------------------------------
// Adds two sparse matrices together.
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T>& SparseMatrix<T>::operator+=(const SparseMatrix & R)
{
compress(R);
int *Ria = R.rows();
int *Rja = R.cols();
T *Rval = R.ptr();
int nRowsCRS = R.nRowsCRS();
int rowR, colR;
T valR;
for (rowR = 0; rowR < nRowsCRS; ++rowR) {
for (int j = Ria[rowR]; j < Ria[rowR+1]; ++j) {
colR = Rja[j];
valR = Rval[j];
// Because we simply want to add the value, we call add and let compress
// take care of the rest--we don't have to worry about extant entries.
add(rowR, colR, valR);
}
}
return *this;
}
//-----------------------------------------------------------------------------
// Return matrix transpose
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T> SparseMatrix<T>::transpose() const
{
compress(*this);
SparseMatrix<T> At(nCols(), nRows());
for (INDEX i=0; i<_nRowsCRS; i++)
for (INDEX ij=_ia[i]; ij<_ia[i+1]; ij++)
At.set(_ja[ij], i, _val[ij]);
compress(At);
return At;
}
//-----------------------------------------------------------------------------
// multiplies each row by the corresponding element in Vector scale
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T>& SparseMatrix<T>::row_scale(const Vector<T> &v)
{
compress(*this);
INDEX i,ij;
GCK(*this, v, v.size()!=nRows(), "Incompatible Vector length in row_scale.");
for(i=0; i<_nRowsCRS; i++)
for(ij=_ia[i]; ij<_ia[i+1]; ij++) _val[ij] *= v[i];
return *this;
}
//-----------------------------------------------------------------------------
// multiples each column by the corresponding element in Vector scale
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T>& SparseMatrix<T>::col_scale(const Vector<T> &v)
{
compress(*this);
INDEX i,ij;
GCK(*this, v, v.size()!=nCols(), "Incompatible Vector length in col_scale.");
for(i=0; i<_nRowsCRS; i++)
for(ij=_ia[i]; ij<_ia[i+1]; ij++) _val[ij] *= v[_ja[ij]];
return *this;
}
//-----------------------------------------------------------------------------
// Returns a vector of the sums of each column
//-----------------------------------------------------------------------------
template<typename T>
DenseVector<T> SparseMatrix<T>::col_sum() const
{
compress(*this);
INDEX i,ij;
GCHK(!nRows(), "SparseMatrix::Matrix not initialized in col_sum.")
DenseVector<T> csum(nCols());
for(i=0; i<_nRowsCRS; i++)
for(ij=_ia[i]; ij<_ia[i+1]; ij++) csum(_ja[ij]) += _val[ij];
return(csum);
}
//-----------------------------------------------------------------------------
// Returns a vector with the number of nonzeros in each column
//-----------------------------------------------------------------------------
template<typename T>
DenseVector<INDEX> SparseMatrix<T>::column_count() const
{
compress(*this);
INDEX i,j;
DenseVector<INDEX> counts(nCols());
for (i=0; i<_nRowsCRS; i++)
for(j=_ia[i]; j<_ia[i+1]; j++) counts(_ja[j])++;
return(counts);
}
//-----------------------------------------------------------------------------
// Writes a the nonzeros of a row to a vector
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::row(INDEX i, DenseVector<T>& row, DenseVector<INDEX>& indx) const
{
compress(*this);
GCHK(i>=nRows(), "get_row() - invalid row number");
if (i >= _nRowsCRS) {
row.resize(0);
indx.resize(0);
return;
}
row.resize(RowSize(i));
indx.resize(row.size());
INDEX idx=0, ij;
for(ij=_ia[i]; ij<_ia[i+1]; ij++)
{
row(idx) = _val[ij];
indx(idx++) = _ja[ij];
}
}
//-----------------------------------------------------------------------------
// Computes the product of N'DN
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::
weighted_least_squares(const SparseMatrix<T> &N, const DiagonalMatrix<T> &D)
{
compress(N);
GCK(N,D,N.nRows()!=D.nRows(),"SparseMatrix::WeightedLeastSquares()");
INDEX k, ki, kj;
resize(N.nCols(), N.nCols()); // set size of this matrix
for (k=0; k<_size; k++) _val[k] = 0.0;
// compute R(i,j) = N(k,i) D(k,q) N(i,j) = N(k,i)*D(k,k)*N(k,j) (sum on k)
for (k=0; k<N._nRowsCRS; k++)
for (ki=N._ia[k]; ki<N._ia[k+1]; ki++)
for (kj=N._ia[k]; kj<N._ia[k+1]; kj++)
add(N._ja[ki],N._ja[kj], D[k]*N[kj]*N[ki]);
compress();
}
//-----------------------------------------------------------------------------
// Return a diagonal matrix containing the diagonal entries of this matrix
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T> SparseMatrix<T>::diag() const
{
compress(*this);
DiagonalMatrix<T> D(nRows(), true); // initialized to zero
INDEX i, ij;
for (i=0; i<_nRowsCRS; i++)
{
for(ij=_ia[i]; ij<_ia[i+1]; ij++)
{
if (_ja[ij]>=i) // have we reached or passed the diagonal?
{
if (_ja[ij]==i) D[i]=_val[ij]; // this this the diagonal?
break; // D[i] is already zero if there is no diagonal
}
}
}
return D;
}
//-----------------------------------------------------------------------------
// Return a diagonal matrix containing row-sum lumped entries of the matrix
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T> SparseMatrix<T>::row_sum_lump() const
{
compress(*this);
DiagonalMatrix<T> D(nRows(), true); // initialized to zero
INDEX i, ij;
for (i=0; i<_nRowsCRS; i++)
{
for(ij=_ia[i]; ij<_ia[i+1]; ij++)
{
D(i,i) += _val[ij];
}
}
return D;
}
//-----------------------------------------------------------------------------
// output function - builds a string with each nonzero triplet value
//-----------------------------------------------------------------------------
template<typename T>
std::string SparseMatrix<T>::to_string() const
{
compress(*this);
std::string out;
INDEX i, ij;
for(i=0; i<_nRowsCRS; i++)
{
for(ij=_ia[i]; ij<_ia[i+1]; ij++)
{
if (ij) out += "\n"; // append newline if not first nonzero
out += "(" + ATC_Utility::to_string(i) + ", "; // append "(i,"
out += ATC_Utility::to_string(_ja[ij]) + ") = "; // append "j) = "
out += ATC_Utility::to_string(_val[ij]); // append "value"
}
}
return out; // return the completed string
}
//-----------------------------------------------------------------------------
// returns the maximum value in the row
//-----------------------------------------------------------------------------
template<typename T>
T SparseMatrix<T>::row_max(INDEX row) const
{
compress(*this);
if (!RowSize(row)) return (T)0; // if there are no nonzeros in the row
INDEX ij;
T max = _val[_ia[row]];
for(ij=_ia[row]+1; ij<_ia[row+1]; ij++) max = std::max(max,_val[ij]);
return max;
}
//-----------------------------------------------------------------------------
// returns the minimum value in the row
//-----------------------------------------------------------------------------
template<typename T>
T SparseMatrix<T>::row_min(INDEX row) const
{
compress(*this);
if (!RowSize(row)) return (T)0; // if there are no nonzeros in the row
INDEX ij;
T min = _val[_ia[row]];
for(ij=_ia[row]+1; ij<_ia[row+1]; ij++) min = std::min(min,_val[ij]);
return min;
}
//-----------------------------------------------------------------------------
// prints a histogram of the values of a row to the screen
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::print_row_histogram(const std::string &name, INDEX nbins) const
{
compress(*this);
std::cout << "Begin histogram " << name << "\n";
std::cout << "# rows: " << _nRows << " columns: " << _nCols
<< " size: " << _size << "\n";
for(INDEX i=0; i<_nRows; i++)
{
print_row_histogram(i, nbins);
std::cout << "\n";
}
std::cout << "End histogram " << name << "\n";
}
//-----------------------------------------------------------------------------
// prints a histogram of the values of a row to the screen
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::print_row_histogram(INDEX row, INDEX nbins) const
{
compress(*this);
if (!nbins) nbins++;
std::vector<INDEX> counts(nbins, 0);
const T min = row_min(row);
const T max = row_max(row);
const T range = max-min;
const double bin_size = range/double(nbins);
if (range<=0.0) counts[nbins-1]=RowSize(row);
else
{
for(INDEX ij=_ia[row]; ij<_ia[row+1]; ij++)
{
INDEX bin = INDEX((_val[ij]-min)/bin_size);
counts[bin-(bin==nbins)]++;
}
}
std::cout<<std::showbase<<std::scientific;
std::cout<<"# Histogram: row "<<row<<" min "<<min<<" max "<<max<<" cnt " <<RowSize(row)<<"\n";
T bin_start = min;
for(INDEX i=0; i<nbins; i++)
{
std::cout << "(" << bin_start << ",";
bin_start += bin_size;
std::cout << bin_start << ") " << counts[i] << "\n";
}
}
//-----------------------------------------------------------------------------
// prints the triplets the screen
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::print_triplets() const
{
typename std::vector<TRI_COORD<T> >::const_iterator t;
std::string out;
out += "==================BEGIN TRIPLETS=======================\n";
// Loop backwards over all new triplets.
for (t = _tri.begin(); t!=_tri.end(); ++t) {
out += "(" + ATC_Utility::to_string(t->i) + ", "; // append "(i,"
out += ATC_Utility::to_string(t->j) + ") = "; // append "j) = "
out += ATC_Utility::to_string(t->v); // append "value"
out += "\n";
}
out += "===================END TRIPLETS========================\n";
std::cout << out;
}
//-----------------------------------------------------------------------------
// Outputs a string to a sparse Matlab type
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::matlab(std::ostream &o, const std::string &s) const
{
compress(*this);
INDEX i, ij;
o << s <<" = sparse(" << nRows() << "," << nCols() << ");\n";
o << std::showbase << std::scientific;
for(i=0; i<_nRowsCRS; i++)
for(ij=_ia[i]; ij<_ia[i+1]; ij++)
o<<s<<"("<<i+1<<","<<_ja[ij]+1<<")="<<_val[ij]<<";\n";
}
//-----------------------------------------------------------------------------
// Writes the matrix to a binary file (after a compress).
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::binary_write(std::fstream& f) const
{
compress(*this);
f.write((char*)&_size, sizeof(INDEX)); // writes number of nonzeros
f.write((char*)&_nRowsCRS, sizeof(INDEX)); // writes number of rows in crs
f.write((char*)&_nRows, sizeof(INDEX)); // write matrix rows
f.write((char*)&_nCols, sizeof(INDEX)); // write number of columns
if (!_size) return;
f.write((char*)_val, sizeof(T) *_size);
f.write((char*)_ja, sizeof(INDEX)*_size);
f.write((char*)_ia, sizeof(INDEX)*(_nRowsCRS+1));
}
//-----------------------------------------------------------------------------
// Reads a SparseMatrix from a binary file. (wipes out any original data)
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::binary_read(std::fstream& f)
{
_delete();
f.read((char*)&_size, sizeof(INDEX));
f.read((char*)&_nRowsCRS, sizeof(INDEX));
f.read((char*)&_nRows, sizeof(INDEX));
f.read((char*)&_nCols, sizeof(INDEX));
if (!_size) return;
_create(_size,_nRowsCRS);
f.read((char*)_val, sizeof(T)*_size);
f.read((char*)_ja, sizeof(INDEX)*_size);
f.read((char*)_ia, sizeof(INDEX)*(_nRowsCRS+1));
}
//-----------------------------------------------------------------------------
// Writes the sparse matrix to a file in a binary format
//-----------------------------------------------------------------------------
template<typename T>
void SparseMatrix<T>::write_restart(FILE *f) const
{
compress(*this);
fwrite(&_size, sizeof(INDEX), 1 ,f); // write number of nonzeros
fwrite(&_nRowsCRS, sizeof(INDEX), 1 ,f); // write number of rows
fwrite(&_nRows, sizeof(INDEX), 1 ,f); // write number of columns
fwrite(&_nCols, sizeof(INDEX), 1 ,f); // write number of columns
if (!_size) return;
fwrite(_val, sizeof(T), _size ,f);
fwrite(_ja, sizeof(T), _size ,f);
fwrite(_ia, sizeof(INDEX), _nRowsCRS+1 ,f);
}
} // end namespace
#endif
|