1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
|
// ATC transfer headers
#include "ThermalTimeIntegrator.h"
#include "TransferOperator.h"
#include "ATC_Coupling.h"
#include "TimeFilter.h"
#include "ATC_Error.h"
#include "PerAtomQuantityLibrary.h"
namespace ATC {
//--------------------------------------------------------
//--------------------------------------------------------
// Class ThermalTimeIntegrator
//--------------------------------------------------------
//--------------------------------------------------------
//--------------------------------------------------------
// Constructor
//--------------------------------------------------------
ThermalTimeIntegrator::ThermalTimeIntegrator(ATC_Coupling * atc,
TimeIntegrationType timeIntegrationType) :
TimeIntegrator(atc, timeIntegrationType)
{
// do nothing
}
//--------------------------------------------------------
// modify
// parses inputs and modifies state of the integrator
//--------------------------------------------------------
bool ThermalTimeIntegrator::modify(int /* narg */, char **arg)
{
bool foundMatch = false;
int argIndex = 0;
// time integration scheme
/*! \page man_thermal_time_integration fix_modify AtC time_integration (thermal)
\section syntax
fix_modify AtC time_integration <descriptor> \n
- descriptor (string) = time integration type \n
various time integration methods for the finite elements\n
\section description
gear - atomic velocity update with 2nd order Verlet, nodal temperature update with 3rd or 4th order Gear, thermostats based on controlling power \n
fractional_step - atomic velocity update with 2nd order Verlet, mixed nodal temperature update, 3/4 Gear for continuum and 2 Verlet for atomic contributions, thermostats based on controlling discrete energy changes\n
\section examples
<TT> fix_modify atc time_integration gear </TT> \n
<TT> fix_modify atc time_integration fractional_step </TT> \n
\section description
\section related
see \ref man_fix_atc
\section default
none
*/
if (strcmp(arg[argIndex],"gear")==0) {
timeIntegrationType_ = GEAR;
needReset_ = true;
foundMatch = true;
}
else if (strcmp(arg[argIndex],"fractional_step")==0) {
timeIntegrationType_ = FRACTIONAL_STEP;
needReset_ = true;
foundMatch = true;
}
return foundMatch;
}
//--------------------------------------------------------
// construct_methods
// creates algorithm objects
//--------------------------------------------------------
void ThermalTimeIntegrator::construct_methods()
{
if (atc_->reset_methods()) {
if (timeIntegrationMethod_) delete timeIntegrationMethod_;
if (timeFilterManager_->need_reset()) {
switch (timeIntegrationType_) {
case GEAR: {
timeFilter_ = timeFilterManager_->construct(TimeFilterManager::IMPLICIT);
atc_->set_mass_mat_time_filter(TEMPERATURE,TimeFilterManager::EXPLICIT);
break;
}
case FRACTIONAL_STEP: {
timeFilter_ = timeFilterManager_->construct(TimeFilterManager::EXPLICIT_IMPLICIT);
atc_->set_mass_mat_time_filter(TEMPERATURE,TimeFilterManager::EXPLICIT_IMPLICIT);
break;
}
default:
throw ATC_Error("Unknown time integration type in ThermalTimeIntegrator::Initialize()");
}
}
if (timeFilterManager_->filter_dynamics()) {
switch (timeIntegrationType_) {
case GEAR: {
timeIntegrationMethod_ = new ThermalTimeIntegratorGearFiltered(this);
break;
}
case FRACTIONAL_STEP: {
timeIntegrationMethod_ = new ThermalTimeIntegratorFractionalStepFiltered(this);
break;
}
default:
throw ATC_Error("Unknown time integration type in ThermalTimeIntegrator::Initialize()");
}
}
else {
switch (timeIntegrationType_) {
case GEAR: {
timeIntegrationMethod_ = new ThermalTimeIntegratorGear(this);
break;
}
case FRACTIONAL_STEP: {
timeIntegrationMethod_ = new ThermalTimeIntegratorFractionalStep(this);
break;
}
default:
throw ATC_Error("Unknown time integration type in ThermalTimeIntegrator::Initialize()");
}
}
}
}
//--------------------------------------------------------
// pack_fields
// add persistent variables to data list
//--------------------------------------------------------
void ThermalTimeIntegrator::pack_fields(RESTART_LIST & data)
{
data["NodalAtomicPowerFiltered"] = & nodalAtomicPowerFiltered_.set_quantity();
data["NodalAtomicEnergyFiltered"] = & nodalAtomicEnergyFiltered_.set_quantity();
TimeIntegrator::pack_fields(data);
}
//--------------------------------------------------------
//--------------------------------------------------------
// Class ThermalIntegrationMethod
//--------------------------------------------------------
//--------------------------------------------------------
//--------------------------------------------------------
// Constructor
// Grab data from ATC
//--------------------------------------------------------
ThermalIntegrationMethod::ThermalIntegrationMethod(ThermalTimeIntegrator * thermalTimeIntegrator) :
TimeIntegrationMethod(thermalTimeIntegrator),
timeFilter_(thermalTimeIntegrator->time_filter()),
temperature_(atc_->field(TEMPERATURE)),
temperatureRoc_(atc_->field_roc(TEMPERATURE)),
temperature2Roc_(atc_->field_2roc(TEMPERATURE)),
nodalAtomicTemperatureOut_(atc_->nodal_atomic_field(TEMPERATURE)),
nodalAtomicTemperature_(nullptr),
temperatureRhs_(atc_->field_rhs(TEMPERATURE)),
nodalAtomicPowerOut_(atc_->nodal_atomic_field_roc(TEMPERATURE))
{
// do nothing
}
//--------------------------------------------------------
// construct_transfers
// Grab existing managed quantities,
// create the rest
//--------------------------------------------------------
void ThermalIntegrationMethod::construct_transfers()
{
nodalAtomicTemperature_ =
(atc_->interscale_manager()).dense_matrix("NodalAtomicTemperature");
}
//--------------------------------------------------------
//--------------------------------------------------------
// Class ThermalIntegratorGear
//--------------------------------------------------------
//--------------------------------------------------------
//--------------------------------------------------------
// Constructor
//--------------------------------------------------------
ThermalTimeIntegratorGear::ThermalTimeIntegratorGear(ThermalTimeIntegrator * thermalTimeIntegrator) :
ThermalIntegrationMethod(thermalTimeIntegrator),
nodalAtomicPowerFiltered_(thermalTimeIntegrator->nodal_atomic_power_filtered())
{
// do nothing
}
//--------------------------------------------------------
// construct_transfers
// Grab existing managed quantities,
// create the rest
//--------------------------------------------------------
void ThermalTimeIntegratorGear::construct_transfers()
{
ThermalIntegrationMethod::construct_transfers();
InterscaleManager & interscaleManager = atc_->interscale_manager();
// add in power computation
DotTwiceKineticEnergy * dotTwiceKineticEnergy =
new DotTwiceKineticEnergy(atc_);
interscaleManager.add_per_atom_quantity(dotTwiceKineticEnergy,"DotTwiceKineticEnergy");
nodalAtomicPower_ = new AtfShapeFunctionRestriction(atc_,
dotTwiceKineticEnergy,
interscaleManager.per_atom_sparse_matrix("Interpolant"));
interscaleManager.add_dense_matrix(nodalAtomicPower_,"NodalAtomicPower");
}
//--------------------------------------------------------
// initialize
// initialize all data
//--------------------------------------------------------
void ThermalTimeIntegratorGear::initialize()
{
ThermalIntegrationMethod::initialize();
// sets up time filter for cases where variables temporally filtered
// this time integrator should use an implicit filter
TimeFilterManager * timeFilterManager = atc_->time_filter_manager();
if (timeFilterManager->need_reset()) {
// Some time filters need the old value for the power
timeFilter_->initialize(nodalAtomicPower_->quantity());
}
if (!timeFilterManager->end_equilibrate()) {
nodalAtomicPowerFiltered_.reset(atc_->num_nodes(),1);
}
if (!timeFilterManager->filter_dynamics()) {
temperatureRhs_ = nodalAtomicPower_->quantity();
}
}
//--------------------------------------------------------
// pre_initial_integrate2
/// time integration before Verlet step 1
//--------------------------------------------------------
void ThermalTimeIntegratorGear::pre_initial_integrate2(double dt)
{
// Predict nodal temperatures and time derivatives based on FE data
// use 3rd order Gear
gear1_3_predict(temperature_.set_quantity(),
temperatureRoc_.set_quantity(),
temperature2Roc_.quantity(),dt);
}
//--------------------------------------------------------
// post_final_integrate1
// time integration after Verlet step 2
//--------------------------------------------------------
void ThermalTimeIntegratorGear::post_final_integrate1(double dt)
{
const DENS_MAT & myNodalAtomicPower(nodalAtomicPower_->quantity());
timeFilter_->apply_post_step2(nodalAtomicPowerFiltered_.set_quantity(),
myNodalAtomicPower,dt);
temperatureRhs_ += myNodalAtomicPower;
// Finish updating temperature
_temperatureResidual_.resize(atc_->num_nodes(),1);
atc_->apply_inverse_mass_matrix(temperatureRhs_.quantity(),
_temperatureResidual_,
TEMPERATURE);
_temperatureResidual_ -= temperatureRoc_.quantity();
_temperatureResidual_ *= dt;
gear1_3_correct(temperature_.set_quantity(),
temperatureRoc_.set_quantity(),
temperature2Roc_.set_quantity(),
_temperatureResidual_,dt);
}
//--------------------------------------------------------
// post_process
// do any post-processing calculations required for
// output phase
//--------------------------------------------------------
void ThermalTimeIntegratorGear::post_process()
{
nodalAtomicPowerOut_ = nodalAtomicPower_->quantity();
nodalAtomicTemperatureOut_ = nodalAtomicTemperature_->quantity();
}
//--------------------------------------------------------
// finish
// finalize state of nodal atomic quantities
//--------------------------------------------------------
void ThermalTimeIntegratorGear::finish()
{
post_process();
}
//--------------------------------------------------------
//--------------------------------------------------------
// Class ThermalTimeIntegratorGearFiltered
//--------------------------------------------------------
//--------------------------------------------------------
//--------------------------------------------------------
// Constructor
// Grab data from ATC
//--------------------------------------------------------
ThermalTimeIntegratorGearFiltered::ThermalTimeIntegratorGearFiltered(ThermalTimeIntegrator * thermalTimeIntegrator) :
ThermalTimeIntegratorGear(thermalTimeIntegrator),
temperature3Roc_(atc_->field_3roc(TEMPERATURE))
{
// do nothing
// specifically if history data is required and we need another time filter object for the fields
}
//--------------------------------------------------------
// pre_initial_integrate2
// time integration before Verlet step 1
//--------------------------------------------------------
void ThermalTimeIntegratorGearFiltered::pre_initial_integrate2(double dt)
{
// Predict nodal temperatures and time derivatives based on FE data
// use 3rd order Gear
gear1_4_predict(temperature_.set_quantity(),
temperatureRoc_.set_quantity(),
temperature2Roc_.set_quantity(),
temperature3Roc_.quantity(),dt);
}
//--------------------------------------------------------
// post_final_integrate1
// first time integration computations
// after Verlet step 2
//--------------------------------------------------------
void ThermalTimeIntegratorGearFiltered::post_final_integrate1(double dt)
{
DENS_MAT & myNodalAtomicPowerFiltered(nodalAtomicPowerFiltered_.set_quantity());
timeFilter_->apply_post_step2(myNodalAtomicPowerFiltered,nodalAtomicPower_->quantity(),dt);
temperatureRhs_ += myNodalAtomicPowerFiltered;
// Finish updating temperature
_temperatureResidual_.resize(atc_->num_nodes(),1);
atc_->apply_inverse_mass_matrix(temperatureRhs_.quantity(),
_temperatureResidual_,
TEMPERATURE);
_temperatureResidual_ -= temperatureRoc_.quantity();
_temperatureResidual_ *= dt;
gear1_4_correct(temperature_.set_quantity(),
temperatureRoc_.set_quantity(),
temperature2Roc_.set_quantity(),
temperature3Roc_.set_quantity(),
_temperatureResidual_,dt);
}
//--------------------------------------------------------
// post_final_integrate3
// third time integration computations
// after Verlet step 2
//--------------------------------------------------------
void ThermalTimeIntegratorGearFiltered::post_final_integrate3(double dt)
{
// update filtered atomic temperature
timeFilter_->apply_post_step2(nodalAtomicTemperatureOut_.set_quantity(),
nodalAtomicTemperature_->quantity(),dt);
}
//--------------------------------------------------------
// post_process
// do any post-processing calculations required for
// output phase
//--------------------------------------------------------
void ThermalTimeIntegratorGearFiltered::post_process()
{
nodalAtomicPowerOut_ = nodalAtomicPowerFiltered_.quantity();
}
//--------------------------------------------------------
//--------------------------------------------------------
// Class ThermalIntegratorFractionalStep
//--------------------------------------------------------
//--------------------------------------------------------
//--------------------------------------------------------
// Constructor
// Grab data from ATC
//--------------------------------------------------------
ThermalTimeIntegratorFractionalStep::ThermalTimeIntegratorFractionalStep(ThermalTimeIntegrator * thermalTimeIntegrator) :
ThermalIntegrationMethod(thermalTimeIntegrator),
nodalAtomicEnergyFiltered_(thermalTimeIntegrator->nodal_atomic_energy_filtered()),
nodalAtomicPowerFiltered_(thermalTimeIntegrator->nodal_atomic_power_filtered()),
atomicTemperatureDelta_(atc_->num_nodes(),1),
nodalAtomicEnergy_(nullptr),
nodalAtomicEnergyOld_(atc_->num_nodes(),1),
nodalAtomicTemperatureOld_(atc_->num_nodes(),1)
{
// do nothing
}
//--------------------------------------------------------
// construct_transfers
// Grab existing managed quantities,
// create the rest
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStep::construct_transfers()
{
ThermalIntegrationMethod::construct_transfers();
InterscaleManager & interscaleManager(atc_->interscale_manager());
nodalAtomicEnergy_ = interscaleManager.dense_matrix("NodalAtomicEnergy");
}
//--------------------------------------------------------
// initialize
// initialize all data
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStep::initialize()
{
ThermalIntegrationMethod::initialize();
// initial power to zero
nodalAtomicPower_.reset(atc_->num_nodes(),1);
// sets up time filter for cases where variables temporally filtered
// this time integrator should use Crank-Nicholson filter for 2nd order accuracy
TimeFilterManager * timeFilterManager = atc_->time_filter_manager();
if (timeFilterManager->need_reset()) {
// the form of this integrator implies no time filters that require history data can be used
timeFilter_->initialize();
}
// sets up time filter for post-processing the filtered power
// this time integrator should use an explicit-implicit filter
// to mirror the 2nd order Verlet integration scheme
// It requires no history information so initial value just sizes arrays
if (!timeFilterManager->end_equilibrate()) {
// implies an initial condition of the instantaneous atomic energy
// for the corresponding filtered variable, consistent with the temperature
nodalAtomicEnergyFiltered_ = nodalAtomicEnergy_->quantity();
nodalAtomicPowerFiltered_.reset(atc_->num_nodes(),1);
}
}
//--------------------------------------------------------
// pre_initial_integrate1
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStep::pre_initial_integrate1(double dt)
{
const DENS_MAT & myNodalAtomicEnergy(nodalAtomicEnergy_->quantity());
// updated filtered energy using explicit-implicit scheme
timeFilter_->apply_pre_step1(nodalAtomicEnergyFiltered_.set_quantity(),
myNodalAtomicEnergy,dt);
}
//--------------------------------------------------------
// pre_initial_integrate2
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStep::pre_initial_integrate2(double dt)
{
// used for updating change in temperature from mass matrix change
this->compute_old_time_data();
// update FE contributions
apply_gear_predictor(dt);
// update filtered nodal atomic power
// that way thermostat and integrator can be consistent
timeFilter_->apply_pre_step1(nodalAtomicPowerFiltered_.set_quantity(),
nodalAtomicPower_,dt);
// store current energy for use later
nodalAtomicPower_ = nodalAtomicEnergy_->quantity();
nodalAtomicPower_ *= -1.;
}
//--------------------------------------------------------
// pre_final_integrate1
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStep::pre_final_integrate1(double dt)
{
// before the new rhs is computed but after atomic velocity is updated
// to allow for general notions of temperature beyond kinetic.
// compute change in restricted atomic energy
nodalAtomicPower_ += nodalAtomicEnergy_->quantity();
// update FE temperature with change in temperature from MD
compute_temperature_delta(nodalAtomicPower_,dt);
temperature_ += atomicTemperatureDelta_.quantity();
// approximation to power for output
nodalAtomicPower_ /= dt;
timeFilter_->apply_post_step1(nodalAtomicPowerFiltered_.set_quantity(),
nodalAtomicPower_,dt);
// make sure nodes are fixed
atc_->set_fixed_nodes();
}
//--------------------------------------------------------
// post_final_integrate1
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStep::post_final_integrate1(double dt)
{
// Finish updating temperature with FE contributions
atc_->apply_inverse_mass_matrix(temperatureRhs_.quantity(),
_temperatureResidual_,TEMPERATURE);
_temperatureResidual_ -= temperatureRoc_.quantity();
_temperatureResidual_ *= dt;
apply_gear_corrector(_temperatureResidual_,dt);
}
//--------------------------------------------------------
// post_final_integrate3
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStep::post_final_integrate3(double dt)
{
// update filtered atomic energy
timeFilter_->apply_post_step1(nodalAtomicEnergyFiltered_.set_quantity(),
nodalAtomicEnergy_->quantity(),dt);
}
//--------------------------------------------------------
// output
// add variables to output list
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStep::post_process()
{
nodalAtomicPowerOut_ = nodalAtomicPower_;
nodalAtomicTemperatureOut_ = nodalAtomicTemperature_->quantity();
}
//--------------------------------------------------------
// finish
// finalize state of nodal atomic quantities
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStep::finish()
{
post_process();
}
//--------------------------------------------------------
// apply_gear_predictor
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStep::apply_gear_predictor(double dt)
{
gear1_3_predict(temperature_.set_quantity(),
temperatureRoc_.set_quantity(),
temperature2Roc_.quantity(),dt);
}
//--------------------------------------------------------
// apply_gear_corrector
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStep::apply_gear_corrector(const DENS_MAT & R_theta, double dt)
{
gear1_3_correct(temperature_.set_quantity(),
temperatureRoc_.set_quantity(),
temperature2Roc_.set_quantity(),
R_theta,dt);
}
//--------------------------------------------------------
// compute_old_time_data
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStep::compute_old_time_data()
{
const DENS_MAT & myNodalAtomicEnergy(nodalAtomicEnergy_->quantity());
atc_->apply_inverse_mass_matrix(myNodalAtomicEnergy,
nodalAtomicTemperatureOld_.set_quantity(),
TEMPERATURE);
nodalAtomicEnergyOld_ = myNodalAtomicEnergy;
}
//--------------------------------------------------------
// compute_temperature_delta
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStep::compute_temperature_delta(const DENS_MAT & atomicEnergyDelta,
double /* dt */)
{
DENS_MAT & myAtomicTemperatureDelta(atomicTemperatureDelta_.set_quantity());
myAtomicTemperatureDelta = nodalAtomicEnergyOld_.quantity() + atomicEnergyDelta;
atc_->apply_inverse_mass_matrix(myAtomicTemperatureDelta,
TEMPERATURE);
myAtomicTemperatureDelta += -1.*(nodalAtomicTemperatureOld_.quantity());
}
//--------------------------------------------------------
//--------------------------------------------------------
// Class ThermalTimeIntegratorFracionalStepFiltered
//--------------------------------------------------------
//--------------------------------------------------------
//--------------------------------------------------------
// Constructor
// Grab data from ATC
//--------------------------------------------------------
ThermalTimeIntegratorFractionalStepFiltered::ThermalTimeIntegratorFractionalStepFiltered(ThermalTimeIntegrator * thermalTimeIntegrator) :
ThermalTimeIntegratorFractionalStep(thermalTimeIntegrator),
temperature3Roc_(atc_->field_3roc(TEMPERATURE))
{
// do nothing
}
//--------------------------------------------------------
// Destructor
//--------------------------------------------------------
ThermalTimeIntegratorFractionalStepFiltered::~ThermalTimeIntegratorFractionalStepFiltered()
{
// do nothing
}
//--------------------------------------------------------
// pre_initial_integrate1
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStepFiltered::pre_initial_integrate1(double dt)
{
// determine change in temperature if no forces were applied over this timestep
// relevant coefficients from time filter
double coefF1 = timeFilter_->filtered_coefficient_pre_s1(dt);
double coefF2 = timeFilter_->filtered_coefficient_post_s1(dt);
double coefU1 = timeFilter_->unfiltered_coefficient_pre_s1(dt);
double coefU2 = timeFilter_->unfiltered_coefficient_post_s1(dt);
DENS_MAT & myAtomicTemperatureDelta(atomicTemperatureDelta_.set_quantity());
DENS_MAT & myNodalAtomicEnergyFiltered(nodalAtomicEnergyFiltered_.set_quantity());
const DENS_MAT & myNodalAtomicEnergy(nodalAtomicEnergy_->quantity());
// composite from change after two step update of current filtered energy
myAtomicTemperatureDelta = (coefF1*coefF2-1.)*myNodalAtomicEnergyFiltered;
// change in filtered temperature from current energy from this and next time levels
myAtomicTemperatureDelta += (coefU1*coefF2+coefU2)*myNodalAtomicEnergy;
// updated filtered energy using explicit-implicit scheme
// nodalAtomicEnergy_ is either set from initialization or from the end of the last timestep
timeFilter_->apply_pre_step1(myNodalAtomicEnergyFiltered,myNodalAtomicEnergy,dt);
}
//--------------------------------------------------------
// output
// add variables to output list
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStepFiltered::output(OUTPUT_LIST & outputData)
{
atc_->apply_inverse_md_mass_matrix(nodalAtomicEnergyFiltered_.quantity(),
nodalAtomicTemperatureOut_.set_quantity(),
TEMPERATURE);
DENS_MAT & nodalAtomicPower(nodalAtomicPowerFiltered_.set_quantity());
if ((atc_->lammps_interface())->rank_zero()) {
outputData["NodalAtomicPower"] = &nodalAtomicPower;
}
}
//--------------------------------------------------------
// apply_gear_predictor
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStepFiltered::apply_gear_predictor(double dt)
{
gear1_4_predict(temperature_.set_quantity(),
temperatureRoc_.set_quantity(),
temperature2Roc_.set_quantity(),
temperature3Roc_.quantity(),dt);
}
//--------------------------------------------------------
// apply_gear_corrector
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStepFiltered::apply_gear_corrector(const DENS_MAT & R_theta, double dt)
{
gear1_4_correct(temperature_.set_quantity(),
temperatureRoc_.set_quantity(),
temperature2Roc_.set_quantity(),
temperature3Roc_.set_quantity(),
R_theta,dt);
}
//--------------------------------------------------------
// compute_temperature_delta
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStepFiltered::compute_old_time_data()
{
const DENS_MAT & myNodalAtomicEnergyFiltered(nodalAtomicEnergyFiltered_.quantity());
atc_->apply_inverse_mass_matrix(myNodalAtomicEnergyFiltered,
nodalAtomicTemperatureOld_.set_quantity(),
TEMPERATURE);
nodalAtomicEnergyOld_ = myNodalAtomicEnergyFiltered;
}
//--------------------------------------------------------
// compute_old_time_data
//--------------------------------------------------------
void ThermalTimeIntegratorFractionalStepFiltered::compute_temperature_delta(const DENS_MAT & atomicEnergyDelta,
double dt)
{
DENS_MAT & myAtomicTemperatureDelta(atomicTemperatureDelta_.set_quantity());
double coefU2 = timeFilter_->unfiltered_coefficient_post_s1(dt);
myAtomicTemperatureDelta += nodalAtomicEnergyOld_.quantity() + coefU2*atomicEnergyDelta;
atc_->apply_inverse_mass_matrix(myAtomicTemperatureDelta,
TEMPERATURE);
myAtomicTemperatureDelta += -1.*nodalAtomicTemperatureOld_.quantity();
}
};
|