1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
|
#ifndef THERMOSTAT_H
#define THERMOSTAT_H
#include "AtomicRegulator.h"
#include "PerAtomQuantityLibrary.h"
#include <map>
#include <set>
#include <string>
namespace ATC {
static const int myLambdaMaxIterations = 50;
// forward declarations
class ThermalTimeIntegrator;
class AtfShapeFunctionRestriction;
class FundamentalAtomQuantity;
class PrescribedDataManager;
/**
* @class Thermostat
* @brief Manager class for atom-continuum control of thermal energy
*/
class Thermostat : public AtomicRegulator {
public:
// constructor
Thermostat(ATC_Coupling * atc,
const std::string & regulatorPrefix = "");
// destructor
virtual ~Thermostat(){};
/** parser/modifier */
virtual bool modify(int narg, char **arg);
/** instantiate up the desired method(s) */
virtual void construct_methods();
// data access, intended for method objects
/** reset the nodal power to a prescribed value */
virtual void reset_lambda_contribution(const DENS_MAT & target);
/** return value for the correction maximum number of iterations */
int lambda_max_iterations() {return lambdaMaxIterations_;};
protected:
// data regarding fixed nodes and applied fluxes
/** set of all fixed nodes */
std::set<int> fixedNodes_;
/** set of all nodes which have a flux applied */
std::set<int> fluxNodes_;
/** maximum number of iterations used in iterative solve for lambda */
int lambdaMaxIterations_;
private:
// DO NOT define this
Thermostat();
};
/**
* @class ThermostatShapeFunction
* @brief Class for thermostat algorithms using the shape function matrices
* (thermostats have general for of N^T w N lambda = rhs)
*/
class ThermostatShapeFunction : public RegulatorShapeFunction {
public:
ThermostatShapeFunction(AtomicRegulator * thermostat,
const std::string & regulatorPrefix = "");
virtual ~ThermostatShapeFunction() {};
/** instantiate all needed data */
virtual void construct_transfers();
protected:
// methods
/** set weighting factor for in matrix Nhat^T * weights * Nhat */
virtual void set_weights();
// member data
/** MD mass matrix */
DIAG_MAN & mdMassMatrix_;
/** pointer to atom velocities */
FundamentalAtomQuantity * atomVelocities_;
/** workspace variables */
DENS_VEC _weightVector_, _maskedWeightVector_;
private:
// DO NOT define this
ThermostatShapeFunction();
};
/**
* @class ThermostatRescale
* @brief Enforces constraint on atomic kinetic energy based on FE temperature
*/
class ThermostatRescale : public ThermostatShapeFunction {
public:
friend class KinetoThermostatRescale; // since this is sometimes used as a set of member functions for friend
ThermostatRescale(AtomicRegulator * thermostat);
virtual ~ThermostatRescale() {};
/** instantiate all needed data */
virtual void construct_transfers();
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** compute boundary flux, requires thermostat input since it is part of the coupling scheme */
virtual void compute_boundary_flux(FIELDS & /* fields */)
{boundaryFlux_[TEMPERATURE] = 0.;};
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
protected:
/** set weighting factor for in matrix Nhat^T * weights * Nhat */
virtual void set_weights();
/** sets up and solves thermostat equations */
virtual void compute_thermostat(double dt);
/** apply solution to atomic quantities */
void apply_to_atoms(PerAtomQuantity<double> * atomVelocities);
/** construct the RHS vector */
virtual void set_rhs(DENS_MAT & rhs);
/** FE temperature field */
DENS_MAN & nodalTemperature_;
/** construction for prolongation of lambda to atoms */
AtomicVelocityRescaleFactor * atomVelocityRescalings_;
/** workspace variables */
DENS_MAT _rhs_;
private:
// DO NOT define this
ThermostatRescale();
};
/**
* @class ThermostatRescaleMixedKePe
* @brief Enforces constraint on atomic kinetic energy based on FE temperature
* when the temperature is a mix of the KE and PE
*/
class ThermostatRescaleMixedKePe : public ThermostatRescale {
public:
ThermostatRescaleMixedKePe(AtomicRegulator * thermostat);
virtual ~ThermostatRescaleMixedKePe() {};
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
protected:
/** set weighting factor for in matrix Nhat^T * weights * Nhat */
virtual void set_weights();
/** construct the RHS vector */
virtual void set_rhs(DENS_MAT & rhs);
/** nodal fluctuating potential energy */
DENS_MAN * nodalAtomicFluctuatingPotentialEnergy_;
/** fraction of temperature from KE */
double keMultiplier_;
/** fraction of temperature from PE */
double peMultiplier_;
private:
// DO NOT define this
ThermostatRescaleMixedKePe();
};
/**
* @class ThermostatFsSolver
* @brief Class for solving the linear system for lambda
* (thermostats have general for of N^T w N lambda = rhs)
*/
class ThermostatFsSolver : public RegulatorShapeFunction {
public:
ThermostatFsSolver(AtomicRegulator * thermostat,
int lambdaMaxIterations,
const std::string & regulatorPrefix = "");
virtual ~ThermostatFsSolver() {};
/** pre-run initialization of method data */
virtual void initialize();
/* sets up and solves the linear system for lambda */
virtual void compute_lambda(const DENS_MAT & rhs,
bool iterateSolution = true);
/* scales lambda */
virtual void scale_lambda(double factor) {*lambda_ *= factor;};
/** change the time step factor */
virtual void set_timestep_factor(double dtFactor) {dtFactor_ = dtFactor;};
protected:
// methods
/** solves the non-linear equation for lambda iteratively */
void iterate_lambda(const MATRIX & rhs);
/** set weighting factor for in matrix Nhat^T * weights * Nhat */
virtual void set_weights();
// data
/** mapping from all to regulated nodes */
DENS_MAT rhsMap_;
/** maximum number of iterations used in iterative solve for lambda */
int lambdaMaxIterations_;
/** pointer to the values of lambda interpolated to atoms */
DENS_MAN * rhsLambdaSquared_;
/** fraction of timestep over which constraint is exactly enforced */
double dtFactor_;
// workspace
DENS_MAT _lambdaOld_; // lambda from previous iteration
DENS_MAT _rhsOverlap_; // normal RHS vector mapped to overlap nodes
DENS_VEC _rhsTotal_; // normal + 2nd order RHS for the iteration loop
DENS_VEC _weightVector_, _maskedWeightVector_;
private:
// DO NOT define this
ThermostatFsSolver();
};
/**
* @class ThermostatGlcFs
* @brief Class for thermostat algorithms which perform the time-integration component of the fractional step method
*/
class ThermostatGlcFs : public RegulatorMethod {
public:
ThermostatGlcFs(AtomicRegulator * thermostat,
int lambdaMaxIterations,
const std::string & regulatorPrefix = "");
virtual ~ThermostatGlcFs() {};
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies thermostat to atoms in the predictor phase */
virtual void apply_pre_predictor(double dt);
/** applies thermostat to atoms in the pre-corrector phase */
virtual void apply_pre_corrector(double dt);
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** compute boundary flux, requires regulator input since it is part of the coupling scheme */
virtual void compute_boundary_flux(FIELDS & fields);
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
/* flag for performing the full lambda prediction calculation */
bool full_prediction();
/** set up atom to material identification */
virtual void reset_atom_materials(const Array<int> & elementToMaterialMap,
const MatrixDependencyManager<DenseMatrix, int> * atomElement);
protected:
// methods
/** sets up appropriate rhs for thermostat equations */
virtual void set_thermostat_rhs(DENS_MAT & rhs,
double dt) = 0;
/** apply forces to atoms */
virtual void apply_to_atoms(PerAtomQuantity<double> * atomicVelocity,
const DENS_MAN * nodalAtomicEnergy,
const DENS_MAT & lambdaForce,
DENS_MAT & nodalAtomicLambdaPower,
double dt);
/** add contributions from thermostat to FE energy */
virtual void add_to_energy(const DENS_MAT & nodalLambdaPower,
DENS_MAT & deltaEnergy,
double dt) = 0;
/* sets up and solves the linear system for lambda */
virtual void compute_lambda(double dt,
bool iterateSolution = true);
// member data
/** solver for lambda linear system */
ThermostatFsSolver * lambdaSolver_;
/** MD mass matrix */
DIAG_MAN & mdMassMatrix_;
/** pointer to atom velocities */
FundamentalAtomQuantity * atomVelocities_;
/** reference to AtC FE temperature */
DENS_MAN & temperature_;
/** pointer to a time filtering object */
TimeFilter * timeFilter_;
/** power induced by lambda */
DENS_MAN * nodalAtomicLambdaPower_;
/** filtered lambda power */
DENS_MAN * lambdaPowerFiltered_;
/** lambda at atomic locations */
PerAtomQuantity<double> * atomLambdas_;
/** atomic force induced by lambda */
AtomicThermostatForce * atomThermostatForces_;
/** pointer to atom masses */
FundamentalAtomQuantity * atomMasses_;
/** hack to determine if first timestep has been passed */
bool isFirstTimestep_;
/** nodal atomic energy */
DENS_MAN * nodalAtomicEnergy_;
/** local version of velocity used as predicted final veloctiy */
PerAtomQuantity<double> * atomPredictedVelocities_;
/** predicted nodal atomic energy */
AtfShapeFunctionRestriction * nodalAtomicPredictedEnergy_;
/** pointer for force applied in first time step */
DENS_MAN * firstHalfAtomForces_;
/** FE temperature change from thermostat during predictor phase in second half of timestep */
DENS_MAT deltaEnergy1_;
/** FE temperature change from thermostat during corrector phase in second half of timestep */
DENS_MAT deltaEnergy2_;
/** right-hand side data for thermostat equation */
DENS_MAT rhs_;
// workspace
DENS_MAT _lambdaPowerOutput_; // power applied by lambda in output format
DENS_MAT _velocityDelta_; // change in velocity when lambda force is applied
DENS_VEC _lambdaOverlap_; // lambda in MD overlapping FE nodes
private:
// DO NOT define this
ThermostatGlcFs();
};
/**
* @class ThermostatSolverFlux
* @brief Class enforces GLC on atomic forces based on FE power when using fractional step time integration
*/
class ThermostatSolverFlux : public ThermostatFsSolver {
public:
ThermostatSolverFlux(AtomicRegulator * thermostat,
int lambdaMaxIterations,
const std::string & regulatorPrefix = "");
virtual ~ThermostatSolverFlux() {};
/** instantiate all needed data */
virtual void construct_transfers();
protected:
// methods
/** sets up the transfer which is the set of nodes being regulated */
virtual void construct_regulated_nodes();
private:
// DO NOT define this
ThermostatSolverFlux();
};
/**
* @class ThermostatIntegratorFlux
* @brief Class integrates GLC on atomic forces based on FE power when using fractional step time integration
*/
class ThermostatIntegratorFlux : public ThermostatGlcFs {
public:
ThermostatIntegratorFlux(AtomicRegulator * thermostat,
int lambdaMaxIterations,
const std::string & regulatorPrefix = "");
virtual ~ThermostatIntegratorFlux() {};
/** pre-run initialization of method data */
virtual void initialize();
protected:
/** sets up appropriate rhs for thermostat equations */
virtual void set_thermostat_rhs(DENS_MAT & rhs,
double dt);
/** add contributions from thermostat to FE energy */
virtual void add_to_energy(const DENS_MAT & nodalLambdaPower,
DENS_MAT & deltaEnergy,
double dt);
// data
/** reference to ATC sources coming from prescribed data, AtC coupling, and extrinsic coupling */
DENS_MAN & heatSource_;
private:
// DO NOT define this
ThermostatIntegratorFlux();
};
/**
* @class ThermostatSolverFixed
* @brief Class enforces GLC on atomic forces based on FE power when using fractional step time integration
*/
class ThermostatSolverFixed : public ThermostatFsSolver {
public:
ThermostatSolverFixed(AtomicRegulator * thermostat,
int lambdaMaxIterations,
const std::string & regulatorPrefix = "");
virtual ~ThermostatSolverFixed() {};
/** instantiate all needed data */
virtual void construct_transfers();
protected:
// methods
/** sets up the transfer which is the set of nodes being regulated */
virtual void construct_regulated_nodes();
private:
// DO NOT define this
ThermostatSolverFixed();
};
/**
* @class ThermostatIntegratorFixed
* @brief Class integrates GLC on atomic forces based on FE power when using fractional step time integration
*/
class ThermostatIntegratorFixed : public ThermostatGlcFs {
public:
ThermostatIntegratorFixed(AtomicRegulator * thermostat,
int lambdaMaxIterations,
const std::string & regulatorPrefix = "");
virtual ~ThermostatIntegratorFixed() {};
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies thermostat to atoms in the predictor phase */
virtual void apply_pre_predictor(double dt);
/** applies thermostat to atoms in the pre-corrector phase */
virtual void apply_pre_corrector(double dt);
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** compute boundary flux, requires thermostat input since it is part of the coupling scheme */
virtual void compute_boundary_flux(FIELDS & /* fields */)
{boundaryFlux_[TEMPERATURE] = 0.;};
/** determine if local shape function matrices are needed */
virtual bool use_local_shape_functions() const {return atomicRegulator_->use_localized_lambda();};
protected:
// methods
/** initialize data for tracking the change in nodal atomic temperature */
virtual void initialize_delta_nodal_atomic_energy(double dt);
/** compute the change in nodal atomic temperature */
virtual void compute_delta_nodal_atomic_energy(double dt);
/** sets up appropriate rhs for thermostat equations */
virtual void set_thermostat_rhs(DENS_MAT & rhs,
double dt);
/** add contributions from thermostat to FE energy */
virtual void add_to_energy(const DENS_MAT & nodalLambdaPower,
DENS_MAT & deltaEnergy,
double dt);
/* sets up and solves the linear system for lambda */
virtual void compute_lambda(double dt,
bool iterateSolution = true);
/** flag for halving the applied force to mitigate numerical errors */
bool halve_force();
// data
/** change in FE energy over a timestep */
DENS_MAT deltaFeEnergy_;
/** initial FE energy used to compute change */
DENS_MAT initialFeEnergy_;
/** change in restricted atomic FE energy over a timestep */
DENS_MAT deltaNodalAtomicEnergy_;
/** initial restricted atomic FE energy used to compute change */
DENS_MAT initialNodalAtomicEnergy_;
/** filtered nodal atomic energy */
DENS_MAN nodalAtomicEnergyFiltered_;
/** forces depending on predicted velocities for correct updating with fixed nodes */
AtomicThermostatForce * atomThermostatForcesPredVel_;
/** coefficient to account for effect of time filtering on rhs terms */
double filterCoefficient_;
/** kinetic energy multiplier in total energy (used for temperature expression) */
double keMultiplier_;
// workspace
DENS_MAT _tempNodalAtomicEnergyFiltered_; // stores filtered energy change in atoms for persistence during predictor
private:
// DO NOT define this
ThermostatIntegratorFixed();
};
/**
* @class ThermostatIntegratorFluxFiltered
* @brief Class integrates GLC on atomic forces based on FE power when using fractional step time integration
* in conjunction with time filtering
*/
class ThermostatIntegratorFluxFiltered : public ThermostatIntegratorFlux {
public:
ThermostatIntegratorFluxFiltered(AtomicRegulator * thermostat,
int lambdaMaxIterations,
const std::string & regulatorPrefix = "");
virtual ~ThermostatIntegratorFluxFiltered() {};
/** pre-run initialization of method data */
virtual void initialize();
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
protected:
/** sets up appropriate rhs for thermostat equations */
virtual void set_thermostat_rhs(DENS_MAT & rhs,
double dt);
/** add contributions from thermostat to FE energy */
virtual void add_to_energy(const DENS_MAT & nodalLambdaPower,
DENS_MAT & deltaEnergy,
double dt);
// data
/** heat source time history required to get instantaneous heat sources */
DENS_MAT heatSourceOld_;
DENS_MAT instantHeatSource_;
DENS_MAT timeStepSource_;
private:
// DO NOT define this
ThermostatIntegratorFluxFiltered();
};
/**
* @class ThermostatIntegratorFixedFiltered
* @brief Class for thermostatting using the temperature matching constraint and is compatible with
the fractional step time-integration with time filtering
*/
class ThermostatIntegratorFixedFiltered : public ThermostatIntegratorFixed {
public:
ThermostatIntegratorFixedFiltered(AtomicRegulator * thermostat,
int lambdaMaxIterations,
const std::string & regulatorPrefix = "");
virtual ~ThermostatIntegratorFixedFiltered() {};
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
protected:
// methods
/** initialize data for tracking the change in nodal atomic temperature */
virtual void initialize_delta_nodal_atomic_energy(double dt);
/** compute the change in nodal atomic temperature */
virtual void compute_delta_nodal_atomic_energy(double dt);
/** sets up appropriate rhs for thermostat equations */
virtual void set_thermostat_rhs(DENS_MAT & rhs,
double dt);
/** add contributions from thermostat to temperature for uncoupled nodes */
virtual void add_to_energy(const DENS_MAT & nodalLambdaPower,
DENS_MAT & deltaEnergy,
double dt);
private:
// DO NOT define this
ThermostatIntegratorFixedFiltered();
};
/**
* @class ThermostatFluxFixed
* @brief Class for thermostatting using the temperature matching constraint one one set of nodes and the flux matching constraint on another
*/
class ThermostatFluxFixed : public RegulatorMethod {
public:
ThermostatFluxFixed(AtomicRegulator * thermostat,
int lambdaMaxIterations,
bool constructThermostats = true);
virtual ~ThermostatFluxFixed();
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies thermostat to atoms in the predictor phase */
virtual void apply_pre_predictor(double dt);
/** applies thermostat to atoms in the pre-corrector phase */
virtual void apply_pre_corrector(double dt);
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
/** compute boundary flux, requires thermostat input since it is part of the coupling scheme */
virtual void compute_boundary_flux(FIELDS & fields)
{thermostatBcs_->compute_boundary_flux(fields);};
protected:
// data
/** thermostat for imposing the fluxes */
ThermostatIntegratorFlux * thermostatFlux_;
/** thermostat for imposing fixed nodes */
ThermostatIntegratorFixed * thermostatFixed_;
/** pointer to whichever thermostat should compute the flux, based on coupling method */
ThermostatGlcFs * thermostatBcs_;
private:
// DO NOT define this
ThermostatFluxFixed();
};
/**
* @class ThermostatFluxFixedFiltered
* @brief Class for thermostatting using the temperature matching constraint one one set of nodes and the flux matching constraint on another with time filtering
*/
class ThermostatFluxFixedFiltered : public ThermostatFluxFixed {
public:
ThermostatFluxFixedFiltered(AtomicRegulator * thermostat,
int lambdaMaxIterations);
virtual ~ThermostatFluxFixedFiltered(){};
private:
// DO NOT define this
ThermostatFluxFixedFiltered();
};
/**
* @class ThermostatGlc
* @brief Class for thermostat algorithms based on Gaussian least constraints (GLC)
*/
class ThermostatGlc : public ThermostatShapeFunction {
public:
ThermostatGlc(AtomicRegulator * thermostat);
virtual ~ThermostatGlc() {};
/** instantiate all needed data */
virtual void construct_transfers();
protected:
// methods
/** apply forces to atoms */
virtual void apply_to_atoms(PerAtomQuantity<double> * atomicVelocity,
const DENS_MAT & lambdaForce,
double dt);
// member data
/** pointer to a time filtering object */
TimeFilter * timeFilter_;
/** filtered lambda power */
DENS_MAN * lambdaPowerFiltered_;
/** atomic force induced by lambda */
PerAtomQuantity<double> * atomThermostatForces_;
/** pointer to access prescribed data for fixed nodes */
PrescribedDataManager * prescribedDataMgr_;
/** pointer to atom masses */
FundamentalAtomQuantity * atomMasses_;
/** workspace variables */
DENS_MAT _velocityDelta_;
private:
// DO NOT define this
ThermostatGlc();
};
/**
* @class ThermostatPowerVerlet
* @brief Class for thermostatting using the heat flux matching constraint and is compatible with
the Gear time-integration
*/
class ThermostatPowerVerlet : public ThermostatGlc {
public:
ThermostatPowerVerlet(AtomicRegulator * thermostat);
virtual ~ThermostatPowerVerlet() {};
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies thermostat to atoms in the predictor phase */
virtual void apply_pre_predictor(double dt);
/** applies thermostat to atoms in the pre-corrector phase */
virtual void apply_pre_corrector(double dt);
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
/** final tasks of a run */
virtual void finish();
/** determine if local shape function matrices are needed */
virtual bool use_local_shape_functions() const {return (!(atomicRegulator_->use_lumped_lambda_solve()) && atomicRegulator_->use_localized_lambda());};
protected:
/** nodal temperature rate of change */
DENS_MAN & nodalTemperatureRoc_;
/** reference to ATC sources coming from prescribed data, AtC coupling, and extrinsic coupling */
DENS_MAN & heatSource_;
/** pointer to nodal atomic power */
DENS_MAN * nodalAtomicPower_;
/** power applied to each atom by lambda force */
AtfShapeFunctionRestriction * nodalAtomicLambdaPower_;
/** workspace variables */
DENS_MAT _rhs_;
/** sets up and solves thermostat equations */
virtual void compute_thermostat(double dt);
/** sets up appropriate rhs for thermostat equations */
virtual void set_thermostat_rhs(DENS_MAT & rhs_nodes);
/** add contributions (if any) to the finite element right-hand side */
virtual void add_to_rhs(FIELDS & rhs);
// workspace
DENS_MAT _nodalAtomicLambdaPowerOut_; // power induced by lambda in output format
private:
// DO NOT define this
ThermostatPowerVerlet();
};
/**
* @class ThermostatHooverVerlet
* @brief Classfor thermostatting using the temperature matching constraint and is compatible with
Gear time-integration
*/
class ThermostatHooverVerlet : public ThermostatPowerVerlet {
public:
ThermostatHooverVerlet(AtomicRegulator * thermostat);
virtual ~ThermostatHooverVerlet() {};
/** instantiate all needed data */
virtual void construct_transfers();
/** final tasks of a run */
virtual void finish() {};
/** compute boundary flux, requires thermostat input since it is part of the coupling scheme */
virtual void compute_boundary_flux(FIELDS & /* fields */)
{boundaryFlux_[TEMPERATURE] = 0.;};
protected:
/** lambda coupling parameter for hoover thermostat */
DENS_MAN * lambdaHoover_;
/** workspace variables */
DENS_MAT _myNodalLambdaPower_;
/** sets up and solves thermostat equations */
virtual void compute_thermostat(double dt);
/** sets up Hoover component of the thermostat */
void set_hoover_rhs(DENS_MAT & rhs);
/** add Hoover contributions to lambda power */
void add_to_lambda_power(const DENS_MAT & myLambdaForce,
double dt);
/** power applied to each atom by hoover lambda force */
AtfShapeFunctionRestriction * nodalAtomicHooverLambdaPower_;
/** add contributions (if any) to the finite element right-hand side */
virtual void add_to_rhs(FIELDS & rhs);
private:
// DO NOT implement this
ThermostatHooverVerlet();
};
/**
* @class ThermostatPowerVerletFiltered
* @brief Class for thermostatting using the heat flux matching constraint and is compatible with
Gear time-integration with time filtering
*/
class ThermostatPowerVerletFiltered : public ThermostatPowerVerlet {
public:
ThermostatPowerVerletFiltered(AtomicRegulator * thermostat);
virtual ~ThermostatPowerVerletFiltered(){};
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
/** compute boundary flux, requires thermostat input since it is part of the coupling scheme */
virtual void compute_boundary_flux(FIELDS & fields);
protected:
/** sets up appropriate rhs for thermostat equations */
virtual void set_thermostat_rhs(DENS_MAT & rhs_nodes);
/** add contributions (if any) to the finite element right-hand side */
virtual void add_to_rhs(FIELDS & rhs);
/** nodal temperature 2nd rate of change (i.e. second time derivative) */
DENS_MAN & nodalTemperature2Roc_;
/** reference to ATC rate of change sources coming from prescribed data, AtC coupling, and extrinsic coupling */
DENS_MAN heatSourceRoc_;
/** references to ATC field rates of changing for inverting the filtered heat sources */
FIELDS & fieldsRoc_;
/** flux rate of changes for inverting filtered fluxes */
FIELDS fluxRoc_;
/** time scale for the time filter */
double filterScale_;
private:
// DO NOT define this
ThermostatPowerVerletFiltered();
};
/**
* @class ThermostatHooverVerletFiltered
* @brief Class for thermostatting using the temperature matching constraint and is compatible with
Gear time-integration with time filtering
*/
class ThermostatHooverVerletFiltered : public ThermostatPowerVerletFiltered {
public:
ThermostatHooverVerletFiltered(AtomicRegulator * thermostat);
virtual ~ThermostatHooverVerletFiltered() {};
/** instantiate all needed data */
virtual void construct_transfers();
/** final tasks of a run */
virtual void finish() {};
/** compute boundary flux, requires thermostat input since it is part of the coupling scheme */
virtual void compute_boundary_flux(FIELDS & /* fields */)
{boundaryFlux_[TEMPERATURE] = 0.;};
protected:
/** lambda coupling parameter for hoover thermostat */
DENS_MAN * lambdaHoover_;
/** workspace variables */
DENS_MAT _myNodalLambdaPower_;
/** sets up and solves thermostat equations */
virtual void compute_thermostat(double dt);
/** sets up Hoover component of the thermostat */
void set_hoover_rhs(DENS_MAT & rhs);
/** add Hoover contributions to lambda power */
void add_to_lambda_power(const DENS_MAT & myLambdaForce,
double dt);
/** power applied to each atom by hoover lambda force */
DENS_MAN * nodalAtomicHooverLambdaPower_;
/** add contributions (if any) to the finite element right-hand side */
virtual void add_to_rhs(FIELDS & rhs);
private:
// DO NOT implement this
ThermostatHooverVerletFiltered();
};
};
#endif
|