1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
#ifndef TIME_INTEGRATOR_H
#define TIME_INTEGRATOR_H
#include "MatrixLibrary.h"
#include "TimeFilter.h"
#include "ATC_TypeDefs.h"
namespace ATC {
// forward declarations
class ATC_Method;
class ATC_Coupling;
class TimeIntegrationMethod;
/**
* @class AtomTimeIntegrator
* @brief Base class for various time integrators for atomic quantities (replacing other lammps fixes)
*/
class AtomTimeIntegrator {
public:
// constructor
AtomTimeIntegrator(){};
// destructor
virtual ~AtomTimeIntegrator(){};
/** create and get necessary transfer operators */
virtual void construct_transfers(){};
/** Predictor phase, Verlet first step for velocity */
virtual void init_integrate_velocity(double /* dt */){};
/** Predictor phase, Verlet first step for position */
virtual void init_integrate_position(double /* dt */){};
/** Corrector phase, Verlet second step for velocity */
virtual void final_integrate(double /* dt */){};
};
/**
* @class AtomTimeIntegratorType
* @brief class for applying velocity-verlet based on atom type
*/
class AtomTimeIntegratorType : public AtomTimeIntegrator {
public:
// constructor
AtomTimeIntegratorType(ATC_Method * atc, AtomType atomType);
// destructor
virtual ~AtomTimeIntegratorType(){};
/** create and get necessary transfer operators */
virtual void construct_transfers();
/** Predictor phase, Verlet first step for velocity */
virtual void init_integrate_velocity(double dt);
/** Predictor phase, Verlet first step for position */
virtual void init_integrate_position(double dt);
/** Corrector phase, Verlet second step for velocity */
virtual void final_integrate(double dt);
protected:
/** pointer to atc object */
ATC_Method * atc_;
/** atom type this is applied to */
AtomType atomType_;
/** atomic masses */
DENS_MAN * mass_;
/** atomic positions */
DENS_MAN * position_;
/** atomic velocities */
DENS_MAN * velocity_;
/** atomic forces */
DENS_MAN * force_;
// workspace
DENS_MAT _deltaQuantity_;
private:
// DO NOT define this
AtomTimeIntegratorType();
};
/**
* @class TimeIntegrator
* @brief Base class for various time integrators for FE quantities
*/
class TimeIntegrator {
public:
/** types of time integration */
enum TimeIntegrationType {
NONE=0,
STEADY,
VERLET,
GEAR,
FRACTIONAL_STEP,
EXPLICIT,
IMPLICIT,
CRANK_NICOLSON,
DIRECT
};
// constructor
TimeIntegrator(ATC_Coupling * atc,
TimeIntegrationType timeIntegrationType = STEADY);
// destructor
virtual ~TimeIntegrator();
/** parser/modifier */
virtual bool modify(int /* narg */, char ** /* arg */){return false;};
/** create objects to implement requested numerical method */
virtual void construct_methods() = 0;
/** create and get necessary transfer operators */
virtual void construct_transfers();
/** pre time integration initialization of data */
virtual void initialize();
/** flag if reset is needed */
bool need_reset() const {return needReset_;};
// time step methods, corresponding to ATC_Coupling
/** first part of pre_initial_integrate */
virtual void pre_initial_integrate1(double dt);
/** second part of pre_initial_integrate */
virtual void pre_initial_integrate2(double dt);
/** first part of post_initial_integrate */
virtual void post_initial_integrate1(double dt);
/** second part of post_initial_integrate */
virtual void post_initial_integrate2(double dt);
/** first part of pre_final_integrate */
virtual void pre_final_integrate1(double dt);
/** second part of pre_final_integrate */
virtual void pre_final_integrate2(double dt);
/** first part of post_final_integrate */
virtual void post_final_integrate1(double dt);
/** second part of post_final_integrate */
virtual void post_final_integrate2(double dt);
/** third part of post_final_integrate */
virtual void post_final_integrate3(double dt);
/** checks to see if first RHS computation is needed */
virtual bool has_final_predictor();
/** checks to see if second RHS computation is needed */
virtual bool has_final_corrector();
/** adds any contributions from time integrator to RHS */
virtual void add_to_rhs();
/** post processing step prior to output */
virtual void post_process();
/** add output data */
virtual void output(OUTPUT_LIST & outputData);
/** pack persistent fields */
virtual void pack_fields(RESTART_LIST & data);
/** finalize any data */
virtual void finish();
// Member data access
/** access to time integration type */
TimeIntegrationType time_integration_type() const
{ return timeIntegrationType_; };
/** access to ATC Transfer object */
ATC_Coupling * atc() {return atc_;};
/** access to time filter object */
TimeFilter * time_filter() {return timeFilter_;};
/** access to time filter manager object */
TimeFilterManager * time_filter_manager() {return timeFilterManager_;};
/** force the integrator to be reset */
void force_reset() {needReset_ = true;};
/** force the integrator not to be reset */
void force_no_reset() {needReset_ = false;};
protected:
/** pointer to time integrator method */
TimeIntegrationMethod * timeIntegrationMethod_;
/** pointer to access ATC methods */
ATC_Coupling * atc_;
/** time filter for specific updates */
TimeFilter * timeFilter_;
/** time filter manager for getting time filtering info */
TimeFilterManager * timeFilterManager_;
/** type of integration scheme being used */
TimeIntegrationType timeIntegrationType_;
/** flat to reset data */
bool needReset_;
private:
// DO NOT define this
TimeIntegrator();
};
/**
* @class TimeIntegrationMethod
* @brief Base class for time integration methods which update FE quantities
*/
class TimeIntegrationMethod {
public:
// constructor
TimeIntegrationMethod(TimeIntegrator * timeIntegrator);
// destructor
virtual ~TimeIntegrationMethod(){};
/** create and get necessary transfer operators */
virtual void construct_transfers(){};
/** pre time integration */
virtual void initialize(){};
// time step methods, corresponding to ATC_Coupling and TimeIntegrator
/** first part of pre_initial_integrate */
virtual void pre_initial_integrate1(double /* dt */){};
/** second part of pre_initial_integrate */
virtual void pre_initial_integrate2(double /* dt */){};
/** first part of post_initial_integrate */
virtual void post_initial_integrate1(double /* dt */){};
/** second part of post_initial_integrate */
virtual void post_initial_integrate2(double /* dt */){};
/** first part of pre_final_integrate */
virtual void pre_final_integrate1(double /* dt */){};
/** second part of pre_final_integrate */
virtual void pre_final_integrate2(double /* dt */){};
/** first part of post_final_integrate */
virtual void post_final_integrate1(double /* dt */){};
/** second part of post_final_integrate */
virtual void post_final_integrate2(double /* dt */){};
/** third part of post_final_integrate */
virtual void post_final_integrate3(double /* dt */){};
/** checks to see if first RHS computation is needed */
virtual bool has_final_predictor() {return false;};
/** checks to see if second RHS computation is needed */
virtual bool has_final_corrector() {return false;};
/** adds any contributions from time integrator to RHS */
virtual void add_to_rhs() {};
/** post processing step */
virtual void post_process(){};
/** add output data */
virtual void output(OUTPUT_LIST & /* outputData */){};
/** pack persistent fields */
virtual void pack_fields(RESTART_LIST & /* data */){};
/** finalize any states */
virtual void finish(){};
protected:
/** owning time integrator */
TimeIntegrator * timeIntegrator_;
/** associated ATC transfer object */
ATC_Coupling * atc_;
private:
// DO NOT define this
TimeIntegrationMethod();
};
//--------------------------------------------------------
//--------------------------------------------------------
// time integration functions not associated
// with any particular class
//--------------------------------------------------------
//--------------------------------------------------------
inline void gear1_4_predict(MATRIX & f,
MATRIX & dot_f,
MATRIX & ddot_f,
const MATRIX & dddot_f,
double dt)
// 4th order Gear integrator for 1rst order ODE predictor step
{
f = f + dot_f*dt + ddot_f*(1./2.*dt*dt) + dddot_f*(1./6.*dt*dt*dt);
dot_f = dot_f + ddot_f*dt+dddot_f*(1./2.*dt*dt);
ddot_f = ddot_f + dddot_f*dt;
};
inline void gear1_3_predict(MATRIX & f,
MATRIX & dot_f,
const MATRIX & ddot_f,
double dt)
// 3rd order Gear integrator for 1rst order ODE predictor step
{
f = f + dot_f*dt + ddot_f*(1./2.*dt*dt);
dot_f = dot_f + ddot_f*dt;
};
inline void gear1_4_correct(MATRIX & f,
MATRIX & dot_f,
MATRIX & ddot_f,
MATRIX & dddot_f,
const MATRIX & R_f,
double dt)
// 4th order Gear integrator for 1rst order ODE corrector step
{
f = f + (3./8.)*R_f;
dot_f = dot_f + (1./dt)*R_f;
ddot_f = ddot_f + (3./2./dt/dt)*R_f;
dddot_f = dddot_f + (1./dt/dt/dt)*R_f;
};
inline void gear1_3_correct(MATRIX & f,
MATRIX & dot_f,
MATRIX & ddot_f,
const MATRIX & R_f,
double dt)
// 3rd order Gear integrator for 1rst order ODE corrector step
{
f = f + (5./12.)*R_f;
dot_f = dot_f + (1./dt)*R_f;
ddot_f = ddot_f + (1./dt/dt)*R_f;
};
inline void explicit_1(MATRIX & f,
const MATRIX & dot_f,
double dt)
// 1rst order explicit ODE update
{
f = f + dt*dot_f;
};
inline void explicit_2(MATRIX & f,
const MATRIX & dot_f,
const MATRIX & ddot_f,
double dt)
// 2nd order explicit ODE update
{
f = f + dt*dot_f + .5*dt*dt*ddot_f;
};
};
#endif
|