1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
#ifndef VECTOR_H
#define VECTOR_H
#include "Matrix.h"
namespace ATC_matrix {
///////////////////////////////////////////////////////////////////////////////
// forward declarations ///////////////////////////////////////////////////////
//* Matrix-vector product
//template<typename T>
//void MultMv(const Matrix<T> &A, const Vector<T> &v, DenseVector<T> &c,
// const bool At=0, T a=1, T b=0);
/******************************************************************************
* abstract class Vector
******************************************************************************/
template<typename T>
class Vector : public Matrix<T>
{
public:
Vector() {}
Vector(const Vector<T> &c); // do not implement!
virtual ~Vector() {}
std::string to_string() const;
// pure virtual functions
virtual T operator()(INDEX i, INDEX j=0) const=0;
virtual T& operator()(INDEX i, INDEX j=0) =0;
virtual T operator[](INDEX i) const=0;
virtual T& operator[](INDEX i) =0;
virtual INDEX nRows() const=0;
virtual T* ptr() const=0;
virtual void resize(INDEX nRows, INDEX nCols=1, bool copy=0)=0;
virtual void reset(INDEX nRows, INDEX nCols=1, bool zero=0)=0;
virtual void copy(const T * ptr, INDEX nRows, INDEX nCols=1)=0;
void write_restart(FILE *f) const; // will be virtual
// output to matlab
using Matrix<T>::matlab;
void matlab(std::ostream &o, const std::string &s="v") const;
using Matrix<T>::operator=;
INDEX nCols() const;
bool in_range(INDEX i) const;
bool same_size(const Vector &m) const;
static bool same_size(const Vector &a, const Vector &b);
protected:
void _set_equal(const Matrix<T> &r);
//* don't allow this
Vector& operator=(const Vector &r);
};
///////////////////////////////////////////////////////////////////////////////
//* performs a matrix-vector multiply with default naive implementation
template<typename T>
void MultMv(const Matrix<T> &A, const Vector<T> &v, DenseVector<T> &c,
const bool At, T /* a */, T b)
{
const INDEX sA[2] = {A.nRows(), A.nCols()}; // m is sA[At] k is sA[!At]
const INDEX M=sA[At], K=sA[!At];
GCK(A, v, v.size()!=K, "MultAb<T>: matrix-vector multiply");
if (c.size() != M)
{
c.resize(M); // set size of C
c.zero(); // do not add result to C
}
else c *= b;
for (INDEX p=0; p<M; p++)
for (INDEX r=0; r<K; r++)
c[p] += A(p*!At+r*At, p*At+r*!At) * v[r];
}
///////////////////////////////////////////////////////////////////////////////
//* Operator for Matrix-vector product
template<typename T>
DenseVector<T> operator*(const Matrix<T> &A, const Vector<T> &b)
{
DenseVector<T> c;
MultMv(A, b, c, 0, 1.0, 0.0);
return c;
}
///////////////////////////////////////////////////////////////////////////////
//* Operator for Vector-matrix product
template<typename T>
DenseVector<T> operator*(const Vector<T> &a, const Matrix<T> &B)
{
DenseVector<T> c;
MultMv(B, a, c, 1, 1.0, 0.0);
return c;
}
///////////////////////////////////////////////////////////////////////////////
//* Multiply a vector by a scalar
template<typename T>
DenseVector<T> operator*(const Vector<T> &v, const T s)
{
DenseVector<T> r(v);
r*=s;
return r;
}
///////////////////////////////////////////////////////////////////////////////
//* Multiply a vector by a scalar - communitive
template<typename T>
DenseVector<T> operator*(const T s, const Vector<T> &v)
{
DenseVector<T> r(v);
r*=s;
return r;
}
///////////////////////////////////////////////////////////////////////////////
//* inverse scaling operator - must always create memory
template<typename T>
DenseVector<T> operator/(const Vector<T> &v, const T s)
{
DenseVector<T> r(v);
r*=(1.0/s); // for integer types this may be worthless
return r;
}
///////////////////////////////////////////////////////////////////////////////
//* Operator for Vector-Vector sum
template<typename T>
DenseVector<T> operator+(const Vector<T> &a, const Vector<T> &b)
{
DenseVector<T> c(a);
c+=b;
return c;
}
///////////////////////////////////////////////////////////////////////////////
//* Operator for Vector-Vector subtraction
template<typename T>
DenseVector<T> operator-(const Vector<T> &a, const Vector<T> &b)
{
DenseVector<T> c(a);
c-=b;
return c;
}
///////////////////////////////////////////////////////////////////////////////
// Template definitions ///////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//* output operator
template<typename T>
std::string Vector<T>::to_string() const
{
std::string s;
int sz = this->size();
for (INDEX i = 0; i < sz; i++)
s += std::string(i?"\t":"") + ATC_Utility::to_string((*this)[i],myPrecision);
return s;
}
///////////////////////////////////////////////////////////////////////////////
//* Writes a matlab script defining the vector to the stream
template<typename T>
void Vector<T>::matlab(std::ostream &o, const std::string &s) const
{
o << s <<"=zeros(" << this->size() << ",1);\n";
int sz = this->size();
for (INDEX i = 0; i < sz; i++)
o << s << "("<<i+1<<") = " << (*this)[i] << ";\n";
}
///////////////////////////////////////////////////////////////////////////////
//* writes the vector data to a file
template <typename T>
void Vector<T>::write_restart(FILE *f) const
{
INDEX size = this->size();
fwrite(&size, sizeof(INDEX),1,f);
if (size) fwrite(this->ptr(), sizeof(T), this->size(), f);
}
///////////////////////////////////////////////////////////////////////////////
//* returns the number of columns; always 1
template<typename T>
inline INDEX Vector<T>::nCols() const
{
return 1;
}
///////////////////////////////////////////////////////////////////////////////
//* returns true if INDEX i is within the range of the vector
template<typename T>
bool Vector<T>::in_range(INDEX i) const
{
return i<this->size();
}
///////////////////////////////////////////////////////////////////////////////
//* returns true if m has the same number of elements this vector
template<typename T>
bool Vector<T>::same_size(const Vector &m) const
{
return this->size() == m.size();
}
///////////////////////////////////////////////////////////////////////////////
//* returns true if a and b have the same number of elements
template<typename T>
inline bool Vector<T>::same_size(const Vector &a, const Vector &b)
{
return a.same_size(b);
}
//----------------------------------------------------------------------------
// general matrix assignment (for densely packed matrices)
//----------------------------------------------------------------------------
template<typename T>
void Vector<T>::_set_equal(const Matrix<T> &r)
{
this->resize(r.nRows(), r.nCols());
const Matrix<T> *pr = &r;
#ifdef OBSOLETE
if (const SparseMatrix<T> *ps = dynamic_cast<const SparseMatrix<T>*>(pr))//sparse_cast(pr))
copy_sparse_to_matrix(ps, *this);
else if (dynamic_cast<const DiagonalMatrix<T>*>(pr))//diag_cast(pr)) // r is Diagonal?
{
this->zero();
for (INDEX i=0; i<r.size(); i++) (*this)(i,i) = r[i];
}
else memcpy(this->ptr(), r.ptr(), r.size()*sizeof(T));
#else
const Vector<T> *pv = dynamic_cast<const Vector<T>*> (pr);
if (pv) this->copy(pv->ptr(),pv->nRows());
else
{
std::cout <<"Error in general vector assignment\n";
exit(1);
}
#endif
}
} // end namespace
#endif
|