1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
#ifndef VOIGT_OPERATIONS_H
#define VOIGT_OPERATIONS_H
#include "MatrixDef.h"
#include "MatrixLibrary.h"
// Voigt indexing puts a symmetric 3x3 matrix into a
// vector form: [0 1 2 3 4 5]
//
// matrix form: [[ 0 5 4 ]
// [ 5 1 3 ]
// [ 4 3 2 ]]
//
// unsymmetric version
// vector form: [0 1 2 3 4 5 6 7 8]
//
// matrix form: [[ 0 5 4 ]
// [ 8 1 3 ]
// [ 7 6 2 ]]
namespace voigt3 {
//const int voigt_idx1_symm[] = {0,1,2,1,0,0}; // first packed voigt index
//const int voigt_idx2_symm[] = {0,1,2,2,2,1}; // second packed voigt index
const int voigt_idx1[] = {0,1,2,1,0,0,2,2,1}; // first packed voigt index
const int voigt_idx2[] = {0,1,2,2,2,1,1,0,0}; // second packed voigt index
// const int voigt_idx1[] = {0,1,2,0,0,1,1,2,2}; // first packed voigt index
// const int voigt_idx2[] = {0,1,2,1,2,2,0,0,1}; // second packed voigt index
//* Computes a symmetric matrix-matrix product
//* Inputs 6-length vectors A, B
inline DENS_VEC dsymm(const DENS_VEC &A, const DENS_VEC &B)
{
DENS_VEC C(6,false);
C(0) = A(0)*B(0)+A(5)*B(5)+A(4)*B(4);
C(1) = A(5)*B(5)+A(1)*B(1)+A(3)*B(3);
C(2) = A(4)*B(4)+A(3)*B(3)+A(2)*B(2);
C(3) = A(5)*B(4)+A(1)*B(3)+A(3)*B(2);
C(4) = A(0)*B(4)+A(5)*B(3)+A(4)*B(2);
C(5) = A(0)*B(5)+A(5)*B(1)+A(4)*B(3);
return C;
}
//* Returns the trace of a 3x3 matrix in symmetric voigt form.
inline double tr(const DENS_VEC &A)
{
return A(0) + A(1) + A(2);
}
//* Computes the determinant of a 3x3 matrix in symmetric voigt form.
inline double det(const DENS_VEC &A)
{
return A(0) * (A(1)*A(2)-A(3)*A(3))
-A(5) * (A(5)*A(2)-A(3)*A(4))
+A(4) * (A(5)*A(3)-A(1)*A(4));
}
//* Returns the derivative of C*C in voigt notation.
inline DENS_MAT derivative_of_square(const DENS_VEC &C)
{
DENS_MAT D(6,6);
D(0,0)=2.0*C(0); D(0,1)=0.0; D(0,2)=0.0;
D(1,0)=0.0; D(1,1)=2.0*C(1); D(1,2)=0.0;
D(2,0)=0.0; D(2,1)=0.0; D(2,2)=2.0*C(2);
D(0,3)=0.0; D(0,4)=2.0*C(4); D(0,5)=2.0*C(5);
D(1,3)=2.0*C(3); D(1,4)=0.0; D(1,5)=2.0*C(5);
D(2,3)=2.0*C(3); D(2,4)=2.0*C(4); D(2,5)=0.0;
D(3,0)=0.0; D(3,1)=C(3); D(3,2)=C(3);
D(4,0)=C(4); D(4,1)=0.0; D(4,2)=C(4);
D(5,0)=C(5); D(5,1)=C(5); D(5,2)=0.0;
D(3,3)=C(1)+C(2); D(3,4)=C(5); D(3,5)=C(4);
D(4,3)=C(5); D(4,4)=C(0)+C(2); D(4,5)=C(3);
D(5,3)=C(4); D(5,4)=C(3); D(5,5)=C(0)+C(1);
return D;
}
//* Computes the inverse of a 3x3 matrix in symmetric voigt form.
inline DENS_VEC inv(const DENS_VEC &A)
{
DENS_VEC B(6,false);
const double inv_det = 1.0/det(A);
B(0) = (A(1)*A(2)-A(3)*A(3))*inv_det;
B(1) = (A(0)*A(2)-A(4)*A(4))*inv_det;
B(2) = (A(0)*A(1)-A(5)*A(5))*inv_det;
B(3) = (A(4)*A(5)-A(0)*A(3))*inv_det;
B(4) = (A(5)*A(3)-A(4)*A(1))*inv_det;
B(5) = (A(4)*A(3)-A(5)*A(2))*inv_det;
return B;
}
//* Returns the identify matrix in voigt form, optionally scaled by a factor.
inline DENS_VEC eye(INDEX N=3, double scale=1.0)
{
const double dij[] = {0.0, scale};
const INDEX voigt_size = N*N-((N*N-N)>>1); // total - symmetric elements
DENS_VEC I(voigt_size,false);
for (INDEX i=0; i<voigt_size; i++) I(i) = dij[i<N];
return I;
}
//* Returns the voigt form of a symmetric matrix.
// consistent with voigt_idx1,2
inline DENS_VEC to_voigt(const DENS_MAT &C)
{
DENS_VEC B(6,false);
B(0)=C(0,0);
B(1)=C(1,1);
B(2)=C(2,2);
B(3)=C(1,2); // take upper triangle entries
B(4)=C(0,2);
B(5)=C(0,1);
return B;
}
//* Returns a symmetric matrix form a voigt form.
// consistent with voigt_idx1,2
inline DENS_MAT from_voigt(const DENS_VEC &B)
{
DENS_MAT C(3,3,false);
C(0,0)=B(0); C(0,1)=B(5); C(0,2)=B(4);
C(1,0)=B(5); C(1,1)=B(1); C(1,2)=B(3);
C(2,0)=B(4); C(2,1)=B(3); C(2,2)=B(2);
return C;
}
//* Returns the voigt form of an unsymmetric matrix.
// consistent with voigt_idx1,2
inline DENS_VEC to_voigt_unsymmetric(const DENS_MAT &C)
{
DENS_VEC B(9,false);
B(0)=C(0,0);
B(1)=C(1,1);
B(2)=C(2,2);
B(3)=C(1,2); // upper triangle entries
B(4)=C(0,2);
B(5)=C(0,1);
B(6)=C(2,1); // lower triangle entries
B(7)=C(2,0);
B(8)=C(1,0);
return B;
}
//* Returns a symmetric matrix form a voigt form.
// consistent with voigt_idx1,2
inline DENS_MAT from_voigt_unsymmetric(const DENS_VEC &B)
{
DENS_MAT C(3,3,false);
C(0,0)=B(0); C(0,1)=B(5); C(0,2)=B(4);
C(1,0)=B(8); C(1,1)=B(1); C(1,2)=B(3);
C(2,0)=B(7); C(2,1)=B(6); C(2,2)=B(2);
return C;
}
//* adds the identity to an unsymmetric matrix form
inline void add_identity_voigt_unsymmetric(DENS_VEC &B)
{
B(0) +=1;
B(1) +=1;
B(2) +=1;
}
//* Converts voigt vector form to 3x3 matrix for non-symmetric tensor at specified node.
inline void vector_to_matrix(const int i, const DENS_MAT & IN, DENS_MAT & OUT)
{
OUT.reset(3,3);
OUT(0,0)=IN(i,0); OUT(0,1)=IN(i,1); OUT(0,2)=IN(i,2);
OUT(1,0)=IN(i,3); OUT(1,1)=IN(i,4); OUT(1,2)=IN(i,5);
OUT(2,0)=IN(i,6); OUT(2,1)=IN(i,7); OUT(2,2)=IN(i,8);
return;
}
//* Converts 3x3 matrix to voigt vector form for non-symmetric tensor at specified node.
inline void matrix_to_vector(const int i, const DENS_MAT & IN, DENS_MAT & OUT)
{
OUT(i,0) = IN(0,0);
OUT(i,1) = IN(0,1);
OUT(i,2) = IN(0,2);
OUT(i,3) = IN(1,0);
OUT(i,4) = IN(1,1);
OUT(i,5) = IN(1,2);
OUT(i,6) = IN(2,0);
OUT(i,7) = IN(2,1);
OUT(i,8) = IN(2,2);
return;
}
//* Converts voigt vector form to 3x3 matrix for symmetric tensor at specified node.
inline void vector_to_symm_matrix(const int i, const DENS_MAT & IN, DENS_MAT & OUT)
{
OUT.reset(3,3);
OUT(0,0)=IN(i,0); OUT(0,1)=IN(i,5); OUT(0,2)=IN(i,4);
OUT(1,0)=IN(i,5); OUT(1,1)=IN(i,1); OUT(1,2)=IN(i,3);
OUT(2,0)=IN(i,4); OUT(2,1)=IN(i,3); OUT(2,2)=IN(i,2);
return;
}
//* Converts 3x3 matrix to voigt vector form for symmetric tensor at specified node.
inline void symm_matrix_to_vector(const int i, const DENS_MAT & IN, DENS_MAT & OUT)
{
OUT(i,0) = IN(0,0);
OUT(i,1) = IN(1,1);
OUT(i,2) = IN(1,2);
OUT(i,3) = IN(1,2);
OUT(i,4) = IN(0,2);
OUT(i,5) = IN(0,1);
return;
}
//* Converts voigt vector form to vector at specified node.
inline DENS_VEC global_vector_to_vector(const int i, const DENS_MAT & IN)
{
DENS_VEC OUT(9);
OUT(0)=IN(i,0); OUT(5)=IN(i,1); OUT(4)=IN(i,2);
OUT(8)=IN(i,3); OUT(1)=IN(i,4); OUT(3)=IN(i,5);
OUT(7)=IN(i,6); OUT(6)=IN(i,7); OUT(2)=IN(i,8);
return OUT;
}
inline void vector_to_global_vector(const int i, const DENS_VEC & IN, DENS_MAT & OUT)
{
OUT(i,0) = IN(0);
OUT(i,1) = IN(5);
OUT(i,2) = IN(4);
OUT(i,3) = IN(8);
OUT(i,4) = IN(1);
OUT(i,5) = IN(3);
OUT(i,6) = IN(7);
OUT(i,7) = IN(6);
OUT(i,8) = IN(2);
return;
}
//* Converts vector to DENS_MAT_VEC
inline void vector_to_dens_mat_vec(const DENS_MAT & IN, DENS_MAT_VEC & OUT)
{
for (int i=0; i<IN.nRows(); i++) {
for (int j=0; j<3; j++) {
for (DENS_MAT_VEC::size_type k=0; k<3; k++) {
OUT[k](i,j) = IN(i,3*j+k);
}
}
}
return;
}
//* Converts DENS_MAT_VEC to vector
inline void symm_dens_mat_vec_to_vector(const DENS_MAT_VEC & IN, DENS_MAT & OUT)
{
for (int i=0; i<IN.front().nRows(); i++) {
for (int v=0; v<6; v++) {
OUT(i,v) = IN[voigt_idx1[v]](i,voigt_idx2[v]);
}
}
return;
}
}
#endif
|