1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
#include "WeakEquationElectronTemperature.h"
#include "Material.h"
#include <iostream>
#include <fstream>
namespace ATC {
//==============================================================
// Class WeakEquationElectronTemperature
//==============================================================
//--------------------------------------------------------------
// Constructor
//--------------------------------------------------------------
WeakEquationElectronTemperature::WeakEquationElectronTemperature()
: WeakEquation(DYNAMIC_PDE,ELECTRON_TEMPERATURE,1)
{
}
//--------------------------------------------------------------
// Destructor
//---------------------------------------------------------------------
WeakEquationElectronTemperature::~WeakEquationElectronTemperature(void)
{}
//---------------------------------------------------------------------
// compute energy
//---------------------------------------------------------------------
void WeakEquationElectronTemperature::E_integrand(
const FIELD_MATS &fields,
const GRAD_FIELD_MATS & /* grad_fields */,
const Material * material,
DENS_MAT & energy ) const
{
material->electron_thermal_energy(fields, energy);
}
//---------------------------------------------------------------------
// compute heat capacities
//---------------------------------------------------------------------
void WeakEquationElectronTemperature::M_integrand(
const FIELD_MATS &fields,
const Material * material,
DENS_MAT & capacity ) const
{
material->electron_heat_capacity(fields, capacity);
}
//---------------------------------------------------------------------
// compute heat fluxes
//---------------------------------------------------------------------
void WeakEquationElectronTemperature::B_integrand(
const FIELD_MATS &fields,
const GRAD_FIELD_MATS &grad_fields,
const Material * material,
DENS_MAT_VEC &flux) const
{
material->electron_heat_flux(fields, grad_fields, flux);
}
//---------------------------------------------------------------------
// compute exchange fluxes
//---------------------------------------------------------------------
bool WeakEquationElectronTemperature::N_integrand(
const FIELD_MATS &fields,
const GRAD_FIELD_MATS & /* grad_fields */,
const Material * material,
DENS_MAT &flux) const
{
DENS_MAT exchange_flux;
bool has = material->electron_phonon_exchange(fields, exchange_flux);
if (has) flux = -1.*exchange_flux;
return has;
}
//==============================================================
// Class WeakEquationElectronJouleHeating
//==============================================================
//--------------------------------------------------------------
// Constructor
//--------------------------------------------------------------
WeakEquationElectronTemperatureJouleHeating::WeakEquationElectronTemperatureJouleHeating()
: WeakEquationElectronTemperature()
{
// convert charge * voltage --> mass length^2 / time^2
//eV2E_ = (ATC::LammpsInterface::instance()->qe2f())
// * (ATC::LammpsInterface::instance()->ftm2v());
eV2E_ = ATC::LammpsInterface::instance()->qv2e();
int nSD = 3;
_J_.assign(nSD, DENS_MAT());
_E_.assign(nSD, DENS_MAT());
}
//--------------------------------------------------------------
// Destructor
//---------------------------------------------------------------------
WeakEquationElectronTemperatureJouleHeating::~WeakEquationElectronTemperatureJouleHeating(void)
{}
//---------------------------------------------------------------------
void WeakEquationElectronTemperatureJouleHeating::E_integrand(
const FIELD_MATS &fields,
const GRAD_FIELD_MATS &grad_fields,
const Material * material,
DENS_MAT &energy) const
{
WeakEquationElectronTemperature::E_integrand(fields, grad_fields, material, energy);
}
//---------------------------------------------------------------------
void WeakEquationElectronTemperatureJouleHeating::M_integrand(
const FIELD_MATS &fields,
const Material * material,
DENS_MAT &capacity) const
{
WeakEquationElectronTemperature::M_integrand(fields, material, capacity);
}
//---------------------------------------------------------------------
void WeakEquationElectronTemperatureJouleHeating::B_integrand(
const FIELD_MATS &fields,
const GRAD_FIELD_MATS &grad_fields,
const Material * material,
DENS_MAT_VEC &flux) const
{
WeakEquationElectronTemperature::B_integrand(fields, grad_fields, material, flux);
}
//---------------------------------------------------------------------
bool WeakEquationElectronTemperatureJouleHeating::N_integrand(
const FIELD_MATS &fields,
const GRAD_FIELD_MATS &grad_fields,
const Material * material,
DENS_MAT &flux) const
{
// call base class to get electron_temperature terms
WeakEquationElectronTemperature::N_integrand(fields, grad_fields, material, flux);
// Joule heating = -I.grad Psi = J.grad Psi \approx J.E
DENS_MAT jouleHeating;
material->electron_flux (fields, grad_fields, _J_);
material->electric_field(fields, grad_fields, _E_);
jouleHeating = _J_[0].mult_by_element(_E_[0]);
for (DENS_MAT_VEC::size_type i=1; i < _J_.size(); i++)
jouleHeating += _J_[i].mult_by_element(_E_[i]);
jouleHeating *= eV2E_;
flux -= jouleHeating;
return true;
}
//==============================================================
// Class WeakEquationElectronConvection
//==============================================================
//--------------------------------------------------------------
// Constructor
//--------------------------------------------------------------
WeakEquationElectronTemperatureConvection::WeakEquationElectronTemperatureConvection()
: WeakEquationElectronTemperatureJouleHeating()
{
int nSD = 3;
_convectiveFlux_.assign(nSD, DENS_MAT());
}
//--------------------------------------------------------------
// Destructor
//---------------------------------------------------------------------
WeakEquationElectronTemperatureConvection::~WeakEquationElectronTemperatureConvection(void)
{
// do nothing
}
//---------------------------------------------------------------------
void WeakEquationElectronTemperatureConvection::B_integrand(
const FIELD_MATS &fields,
const GRAD_FIELD_MATS &grad_fields,
const Material * material,
DENS_MAT_VEC &flux) const
{
// add diffusion term
WeakEquationElectronTemperatureJouleHeating::B_integrand(fields, grad_fields, material, flux);
//flux[0] = 0.;
//flux[1] = 0.;
//flux[2] = 0.;
// add convection term
DENS_MAT_VEC convectiveFlux;
material->electron_heat_convection(fields,_convectiveFlux_);
flux[0] += _convectiveFlux_[0];
flux[1] += _convectiveFlux_[1];
flux[2] += _convectiveFlux_[2];
}
//---------------------------------------------------------------------
bool WeakEquationElectronTemperatureConvection::N_integrand(
const FIELD_MATS &fields,
const GRAD_FIELD_MATS &grad_fields,
const Material * material,
DENS_MAT &flux) const
{
// call base class to get electron_temperature terms
WeakEquationElectronTemperatureJouleHeating::N_integrand(fields, grad_fields, material, flux);
#ifdef TEST
// add exchange with kinetic energy
DENS_MAT keExchange;
DENS_MAT capacity;
material->electron_heat_capacity(fields, capacity);
capacity *= 2./3.; // correction in DDM equations
//FIELD_MATS::const_iterator dField = fields.find(ELECTRON_DENSITY);
FIELD_MATS::const_iterator tField = fields.find(ELECTRON_TEMPERATURE);
//const DENS_MAT & density = dField->second;
const DENS_MAT & temperature = tField->second;
GRAD_FIELD_MATS::const_iterator velocityGradients = grad_fields.find(ELECTRON_VELOCITY);
const DENS_MAT_VEC & dv = velocityGradients->second;
CLON_VEC vxx(dv[0],CLONE_COL,0);
CLON_VEC vyy(dv[1],CLONE_COL,1);
CLON_VEC vzz(dv[2],CLONE_COL,2);
keExchange = vxx + vyy + vzz;
//keExchange *= density;
keExchange *= temperature;
keExchange *= capacity;
flux -= keExchange;
#endif
return true;
}
}; // end namespace
|