1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
#if (__cplusplus >= 201103L)
#include <numeric>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <limits>
#include "colvarmodule.h"
#include "colvarvalue.h"
#include "colvarparse.h"
#include "colvar.h"
#include "colvarcomp.h"
colvar::aspathCV::aspathCV(std::string const &conf): CVBasedPath(conf) {
function_type = "aspathCV";
cvm::log(std::string("Total number of frames: ") + cvm::to_str(total_reference_frames) + std::string("\n"));
std::vector<cvm::real> p_weights(cv.size(), 1.0);
get_keyval(conf, "weights", p_weights, std::vector<cvm::real>(cv.size(), 1.0));
x.type(colvarvalue::type_scalar);
use_explicit_gradients = true;
cvm::real p_lambda;
get_keyval(conf, "lambda", p_lambda, -1.0);
ArithmeticPathCV::ArithmeticPathBase<colvarvalue, cvm::real, ArithmeticPathCV::path_sz::S>::initialize(cv.size(), total_reference_frames, p_lambda, ref_cv[0], p_weights);
cvm::log(std::string("Lambda is ") + cvm::to_str(lambda) + std::string("\n"));
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
if (!cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
use_explicit_gradients = false;
}
cvm::log(std::string("The weight of CV ") + cvm::to_str(i_cv) + std::string(" is ") + cvm::to_str(weights[i_cv]) + std::string("\n"));
}
}
void colvar::aspathCV::updateDistanceToReferenceFrames() {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
cv[i_cv]->calc_value();
}
for (size_t i_frame = 0; i_frame < ref_cv.size(); ++i_frame) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
colvarvalue ref_cv_value(ref_cv[i_frame][i_cv]);
colvarvalue current_cv_value(cv[i_cv]->value());
if (current_cv_value.type() == colvarvalue::type_scalar) {
frame_element_distances[i_frame][i_cv] = 0.5 * cv[i_cv]->dist2_lgrad(cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)), ref_cv_value.real_value);
} else {
frame_element_distances[i_frame][i_cv] = 0.5 * cv[i_cv]->dist2_lgrad(cv[i_cv]->sup_coeff * current_cv_value, ref_cv_value);
}
}
}
}
void colvar::aspathCV::calc_value() {
if (lambda < 0) {
// this implies that the user may not set a valid lambda value
// so recompute it by the suggested value in Parrinello's paper
cvm::log("A non-positive value of lambda is detected, which implies that it may not set in the configuration.\n");
cvm::log("This component (aspathCV) will recompute a value for lambda following the suggestion in the origin paper.\n");
std::vector<cvm::real> rmsd_between_refs(total_reference_frames - 1, 0.0);
computeDistanceBetweenReferenceFrames(rmsd_between_refs);
reComputeLambda(rmsd_between_refs);
cvm::log("Ok, the value of lambda is updated to " + cvm::to_str(lambda));
}
computeValue();
x = s;
}
void colvar::aspathCV::calc_gradients() {
computeDerivatives();
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
cv[i_cv]->calc_gradients();
if ( cv[i_cv]->is_enabled(f_cvc_explicit_gradient) &&
!cv[i_cv]->is_enabled(f_cvc_scalable) &&
!cv[i_cv]->is_enabled(f_cvc_scalable_com)) {
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = dsdx[i_cv][j_elem] * factor_polynomial * (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad;
}
}
}
}
}
}
void colvar::aspathCV::apply_force(colvarvalue const &force) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
if ( cv[i_cv]->is_enabled(f_cvc_explicit_gradient) &&
!cv[i_cv]->is_enabled(f_cvc_scalable) &&
!cv[i_cv]->is_enabled(f_cvc_scalable_com)
) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
}
} else {
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
colvarvalue cv_force = dsdx[i_cv] * force.real_value * factor_polynomial;
cv[i_cv]->apply_force(cv_force);
}
}
}
colvar::aspathCV::~aspathCV() {}
colvar::azpathCV::azpathCV(std::string const &conf): CVBasedPath(conf) {
function_type = "azpathCV";
cvm::log(std::string("Total number of frames: ") + cvm::to_str(total_reference_frames) + std::string("\n"));
std::vector<cvm::real> p_weights(cv.size(), 1.0);
get_keyval(conf, "weights", p_weights, std::vector<cvm::real>(cv.size(), 1.0));
x.type(colvarvalue::type_scalar);
use_explicit_gradients = true;
cvm::real p_lambda;
get_keyval(conf, "lambda", p_lambda, -1.0);
ArithmeticPathCV::ArithmeticPathBase<colvarvalue, cvm::real, ArithmeticPathCV::path_sz::Z>::initialize(cv.size(), total_reference_frames, p_lambda, ref_cv[0], p_weights);
cvm::log(std::string("Lambda is ") + cvm::to_str(lambda) + std::string("\n"));
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
if (!cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
use_explicit_gradients = false;
}
cvm::log(std::string("The weight of CV ") + cvm::to_str(i_cv) + std::string(" is ") + cvm::to_str(weights[i_cv]) + std::string("\n"));
}
}
void colvar::azpathCV::updateDistanceToReferenceFrames() {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
cv[i_cv]->calc_value();
}
for (size_t i_frame = 0; i_frame < ref_cv.size(); ++i_frame) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
colvarvalue ref_cv_value(ref_cv[i_frame][i_cv]);
colvarvalue current_cv_value(cv[i_cv]->value());
if (current_cv_value.type() == colvarvalue::type_scalar) {
frame_element_distances[i_frame][i_cv] = 0.5 * cv[i_cv]->dist2_lgrad(cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)), ref_cv_value.real_value);
} else {
frame_element_distances[i_frame][i_cv] = 0.5 * cv[i_cv]->dist2_lgrad(cv[i_cv]->sup_coeff * current_cv_value, ref_cv_value);
}
}
}
}
void colvar::azpathCV::calc_value() {
if (lambda < 0) {
// this implies that the user may not set a valid lambda value
// so recompute it by the suggested value in Parrinello's paper
cvm::log("A non-positive value of lambda is detected, which implies that it may not set in the configuration.\n");
cvm::log("This component (azpathCV) will recompute a value for lambda following the suggestion in the origin paper.\n");
std::vector<cvm::real> rmsd_between_refs(total_reference_frames - 1, 0.0);
computeDistanceBetweenReferenceFrames(rmsd_between_refs);
reComputeLambda(rmsd_between_refs);
cvm::log("Ok, the value of lambda is updated to " + cvm::to_str(lambda));
}
computeValue();
x = z;
}
void colvar::azpathCV::calc_gradients() {
computeDerivatives();
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
cv[i_cv]->calc_gradients();
if ( cv[i_cv]->is_enabled(f_cvc_explicit_gradient) &&
!cv[i_cv]->is_enabled(f_cvc_scalable) &&
!cv[i_cv]->is_enabled(f_cvc_scalable_com)) {
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = dzdx[i_cv][j_elem] * factor_polynomial * (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad;
}
}
}
}
}
}
void colvar::azpathCV::apply_force(colvarvalue const &force) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
if ( cv[i_cv]->is_enabled(f_cvc_explicit_gradient) &&
!cv[i_cv]->is_enabled(f_cvc_scalable) &&
!cv[i_cv]->is_enabled(f_cvc_scalable_com)
) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
}
} else {
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
const colvarvalue cv_force = dzdx[i_cv] * force.real_value * factor_polynomial;
cv[i_cv]->apply_force(cv_force);
}
}
}
colvar::azpathCV::~azpathCV() {}
#endif
|