File: radixsort_cta.cu

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (337 lines) | stat: -rw-r--r-- 9,622 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
// -------------------------------------------------------------
// CUDPP -- CUDA Data Parallel Primitives library
// -------------------------------------------------------------
// $Revision$
// $Date$
// ------------------------------------------------------------- 
// This source code is distributed under the terms of license.txt 
// in the root directory of this source distribution.
// ------------------------------------------------------------- 
#include <cudpp_globals.h>
#include "cudpp_radixsort.h"
#include "cta/scan_cta.cu"
#include <cudpp.h>
#include <stdio.h>
 
#include <cudpp_util.h>
#include <math.h>
#include "sharedmem.h"


#ifdef __DEVICE_EMULATION__
#define __EMUSYNC __syncthreads()
#else
#define __EMUSYNC
#endif

/**
 * @file
 * sort_cta.cu
 * 
 * @brief CUDPP CTA-level sort routines
 */

/** \addtogroup cudpp_cta 
* @{
*/

/** @name Radix Sort Functions
* @{
*/


typedef unsigned int uint;

/**
 * @brief Flips bits of single-precision floating-point number (parameterized by doFlip)
 * 
 *  flip a float for sorting
 *  finds SIGN of fp number.
 *  if it's 1 (negative float), it flips all bits
 *  if it's 0 (positive float), it flips the sign only
 * @param[in] f floating-point input (passed as unsigned int)
 * @see floatUnflip
**/

template <bool doFlip>
__device__ uint floatFlip(uint f)
{
    if (doFlip)
    {
        uint mask = -int(f >> 31) | 0x80000000;
        return f ^ mask;
    }
    else
        return f;
}

/**
 * @brief Reverses bit-flip of single-precision floating-point number (parameterized by doFlip)
 * 
 * flip a float back (invert FloatFlip)
 *  signed was flipped from above, so:
 *  if sign is 1 (negative), it flips the sign bit back
 *  if sign is 0 (positive), it flips all bits back
 * @param[in] f floating-point input (passed as unsigned int)
 * @see floatFlip
**/
template <bool doFlip>
__device__ uint floatUnflip(uint f)
{
    if (doFlip)
    {
        uint mask = ((f >> 31) - 1) | 0x80000000;
        return f ^ mask;
    }
    else
        return f;
}

/**
 * @brief Scans one warp quickly, optimized for 32-element warps, using shared memory
 * 
 * Scans each warp in parallel ("warp-scan"), one element per thread.
 * uses 2 numElements of shared memory per thread (64 numElements per warp)
 * 
 * @param[in] val Elements per thread to scan
 * @param[in,out] sData
**/
template<class T, int maxlevel>
__device__ T scanwarp(T val, volatile T* sData)
{
    // The following is the same as 2 * WARP_SIZE * warpId + threadInWarp = 
    // 64*(threadIdx.x >> 5) + (threadIdx.x & (WARP_SIZE - 1))
    int idx = 2 * threadIdx.x - (threadIdx.x & (WARP_SIZE - 1));
    sData[idx] = 0;
    idx += WARP_SIZE;
    T t = sData[idx] = val;          __EMUSYNC;

#ifdef __DEVICE_EMULATION__             
        t = sData[idx -  1]; __EMUSYNC; 
        sData[idx] += t;       __EMUSYNC;
        t = sData[idx -  2];   __EMUSYNC; 
        sData[idx] += t;       __EMUSYNC;
        t = sData[idx -  4];   __EMUSYNC; 
        sData[idx] += t;       __EMUSYNC;
        t = sData[idx -  8];   __EMUSYNC; 
        sData[idx] += t;       __EMUSYNC;
        t = sData[idx - 16];   __EMUSYNC; 
        sData[idx] += t;       __EMUSYNC;
#else
        if (0 <= maxlevel) { sData[idx] = t = t + sData[idx - 1]; } __EMUSYNC;
        if (1 <= maxlevel) { sData[idx] = t = t + sData[idx - 2]; } __EMUSYNC;
        if (2 <= maxlevel) { sData[idx] = t = t + sData[idx - 4]; } __EMUSYNC;
        if (3 <= maxlevel) { sData[idx] = t = t + sData[idx - 8]; } __EMUSYNC;
        if (4 <= maxlevel) { sData[idx] = t = t + sData[idx -16]; } __EMUSYNC;
#endif          
        return sData[idx] - val;  // convert inclusive -> exclusive
}

/**
 * @brief Scans 4*CTA_SIZE unsigned ints in a block
 *
 * scan4 scans 4*CTA_SIZE numElements in a block (4 per
 * thread), using a warp-scan algorithm
 * 
 * @param[in] idata 4-vector of integers to scan
**/
__device__ uint4 scan4(uint4 idata)
{    
    extern  __shared__  uint ptr[];
    
    uint idx = threadIdx.x;

    uint4 val4 = idata;
    uint sum[3];
    sum[0] = val4.x;
    sum[1] = val4.y + sum[0];
    sum[2] = val4.z + sum[1];
    
    uint val = val4.w + sum[2];
    
    val = scanwarp<uint, 4>(val, ptr);
    __syncthreads();

    if ((idx & (WARP_SIZE - 1)) == WARP_SIZE - 1)
    {
        ptr[idx >> 5] = val + val4.w + sum[2];
    }
    __syncthreads();

#ifndef __DEVICE_EMULATION__
    if (idx < WARP_SIZE)
#endif
    {
        ptr[idx] = scanwarp<uint, 2>(ptr[idx], ptr);
    }
    __syncthreads();

    val += ptr[idx >> 5];

    val4.x = val;
    val4.y = val + sum[0];
    val4.z = val + sum[1];
    val4.w = val + sum[2];      
        
    return val4;
}

/**
 * @brief Computes output position for each thread given predicate; trues come first then falses
 * 
 * Rank is the core of the radix sort loop.  Given a predicate, it
 * computes the output position for each thread in an ordering where all
 * True threads come first, followed by all False threads. 
 * This version handles 4 predicates per thread; hence, "rank4".
 *
 * @param[in] preds true/false values for each of the 4 elements in this thread
 *
 * @todo is the description of "preds" correct?
**/
template <int ctasize>
__device__ uint4 rank4(uint4 preds)
{
    uint4 address = scan4(preds);  

    __shared__ uint numtrue;
    if (threadIdx.x == ctasize-1)
    {
        numtrue = address.w + preds.w;
    }
    __syncthreads();

    uint4 rank;
    uint idx = threadIdx.x << 2;
    rank.x = (preds.x) ? address.x : numtrue + idx   - address.x;
    rank.y = (preds.y) ? address.y : numtrue + idx + 1 - address.y;
    rank.z = (preds.z) ? address.z : numtrue + idx + 2 - address.z;
    rank.w = (preds.w) ? address.w : numtrue + idx + 3 - address.w;     
                
    return rank;
}

/**
 * @brief Sorts one block
 *
 * Uses rank to sort one bit at a time: Sorts a block according
 * to bits startbit -> nbits + startbit
 * @param[in,out] key
 * @param[in,out] value
**/
template<uint nbits, uint startbit>
__device__ void radixSortBlock(uint4 &key, uint4 &value)
{
    extern __shared__ uint sMem1[];
    for(uint shift = startbit; shift < (startbit + nbits); ++shift)
    {        
        uint4 lsb;
        lsb.x = !((key.x >> shift) & 0x1);
        lsb.y = !((key.y >> shift) & 0x1);
        lsb.z = !((key.z >> shift) & 0x1);
        lsb.w = !((key.w >> shift) & 0x1); 

        uint4 r = rank4<256>(lsb);

#if 1
        // This arithmetic strides the ranks across 4 SORT_CTA_SIZE regions
        sMem1[(r.x & 3) * SORT_CTA_SIZE + (r.x >> 2)] = key.x;
        sMem1[(r.y & 3) * SORT_CTA_SIZE + (r.y >> 2)] = key.y;
        sMem1[(r.z & 3) * SORT_CTA_SIZE + (r.z >> 2)] = key.z;
        sMem1[(r.w & 3) * SORT_CTA_SIZE + (r.w >> 2)] = key.w; 
        __syncthreads();

        // The above allows us to read without 4-way bank conflicts:
        key.x = sMem1[threadIdx.x];
        key.y = sMem1[threadIdx.x +     SORT_CTA_SIZE];
        key.z = sMem1[threadIdx.x + 2 * SORT_CTA_SIZE];
        key.w = sMem1[threadIdx.x + 3 * SORT_CTA_SIZE];

        __syncthreads();

        sMem1[(r.x & 3) * SORT_CTA_SIZE + (r.x >> 2)] = value.x;
        sMem1[(r.y & 3) * SORT_CTA_SIZE + (r.y >> 2)] = value.y;
        sMem1[(r.z & 3) * SORT_CTA_SIZE + (r.z >> 2)] = value.z;
        sMem1[(r.w & 3) * SORT_CTA_SIZE + (r.w >> 2)] = value.w;
        __syncthreads();

        value.x = sMem1[threadIdx.x];
        value.y = sMem1[threadIdx.x +     SORT_CTA_SIZE];
        value.z = sMem1[threadIdx.x + 2 * SORT_CTA_SIZE];
        value.w = sMem1[threadIdx.x + 3 * SORT_CTA_SIZE];
#else
        sMem1[r.x] = key.x;
        sMem1[r.y] = key.y;
        sMem1[r.z] = key.z;
        sMem1[r.w] = key.w;
        __syncthreads();

        // This access has 4-way bank conflicts
        key = sMem[threadIdx.x];

        __syncthreads();

        sMem1[r.x] = value.x;
        sMem1[r.y] = value.y;
        sMem1[r.z] = value.z;
        sMem1[r.w] = value.w;
        __syncthreads();

        value = sMem[threadIdx.x];
#endif

        __syncthreads();
    }
}

/**
 * @brief Sorts one block. Key-only version.
 *
 * Uses rank to sort one bit at a time: Sorts a block according
 * to bits startbit -> nbits + startbit
 * @param[in,out] key
**/

template<uint nbits, uint startbit>
__device__ void radixSortBlockKeysOnly(uint4 &key)
{
    extern __shared__ uint sMem1[];
    for(uint shift = startbit; shift < (startbit + nbits); ++shift)
    {                   
        uint4 lsb;
        lsb.x = !((key.x >> shift) & 0x1);
        lsb.y = !((key.y >> shift) & 0x1);
        lsb.z = !((key.z >> shift) & 0x1);
        lsb.w = !((key.w >> shift) & 0x1);

        uint4 r = rank4<256>(lsb);

#if 1
        // This arithmetic strides the ranks across 4 CTA_SIZE regions
        sMem1[(r.x & 3) * SORT_CTA_SIZE + (r.x >> 2)] = key.x;
        sMem1[(r.y & 3) * SORT_CTA_SIZE + (r.y >> 2)] = key.y;
        sMem1[(r.z & 3) * SORT_CTA_SIZE + (r.z >> 2)] = key.z;
        sMem1[(r.w & 3) * SORT_CTA_SIZE + (r.w >> 2)] = key.w;
        __syncthreads();

        // The above allows us to read without 4-way bank conflicts:
        key.x = sMem1[threadIdx.x];
        key.y = sMem1[threadIdx.x +     SORT_CTA_SIZE];
        key.z = sMem1[threadIdx.x + 2 * SORT_CTA_SIZE];
        key.w = sMem1[threadIdx.x + 3 * SORT_CTA_SIZE];
#else
        sMem1[r.x] = key.x;
        sMem1[r.y] = key.y;
        sMem1[r.z] = key.z;
        sMem1[r.w] = key.w;
        __syncthreads();

        // This access has 4-way bank conflicts
        key = sMem[threadIdx.x];
#endif

        __syncthreads();
    }
}

/** @} */ // end radix sort functions
/** @} */ // end cudpp_cta