| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 
 | // ------------------------------------------------------------- 
//  cuDPP -- CUDA Data Parallel Primitives library
//  -------------------------------------------------------------
//  $Revision: 5633 $
//  $Date: 2009-07-01 15:02:51 +1000 (Wed, 01 Jul 2009) $
// ------------------------------------------------------------- 
// This source code is distributed under the terms of license.txt 
// in the root directory of this source distribution.
// ------------------------------------------------------------- 
 
/**
 * @file
 * scan_cta.cu
 *
 * @brief CUDPP CTA-level scan routines
 */
/** \defgroup cudpp_cta CUDPP CTA-Level API
  * The CUDPP CTA-Level API contains functions that run on the GPU 
  * device.  These are CUDA \c __device__ functions that are called
  * from within other CUDA device functions (typically 
  * \link cudpp_kernel CUDPP Kernel-Level API\endlink functions).
  * They are called CTA-level functions because they typically process
  * s_data "owned" by each CTA within shared memory, and are agnostic of
  * any other CTAs that may be running (or how many CTAs are running),
  * other than to compute appropriate global memory addresses.
  * @{
  */
/** @name Scan Functions
* @{
*/
#include <cudpp_globals.h>
#include <cudpp_util.h>
#include <math.h>
#include <cudpp.h>
/**
 * @brief Macro to insert necessary __syncthreads() in device emulation mode
 */
#ifdef __DEVICE_EMULATION__
#define __EMUSYNC __syncthreads()
#else
#define __EMUSYNC
#endif
/** 
  * @brief Template class containing compile-time parameters to the scan functions
  *
  * ScanTraits is passed as a template parameter to all scan functions.  By 
  * using these compile-time functions we can enable generic code while 
  * maintaining the highest performance.  This is crucial for the performance 
  * of low-level workhorse algorithms like scan.
  *
  * @param T The datatype of the scan
  * @param oper The ::CUDPPOperator to use for the scan (add, max, etc.)
  * @param multiRow True if this is a multi-row scan
  * @param unroll True if scan inner loops should be unrolled
  * @param sums True if each block should write it's sum to the d_blockSums array (false for single-block scans)
  * @param backward True if this is a backward scan
  * @param fullBlock True if all blocks in this scan are full (CTA_SIZE * SCAN_ELEMENTS_PER_THREAD elements)
  * @param exclusive True for exclusive scans, false for inclusive scans
  */
template <class T, CUDPPOperator oper, bool backward, bool exclusive,
          bool multiRow, bool sums, bool fullBlock>
class ScanTraits
{
public:
    
    //! Returns true if this is a backward scan
    static __device__ bool isBackward()    { return backward; };
    //! Returns true if this is an exclusive scan
    static __device__ bool isExclusive()  { return exclusive; };
    //! Returns true if this a multi-row scan.
    static __device__ bool isMultiRow()    { return multiRow; };
    //! Returns true if this scan writes the sum of each block to the d_blockSums array (multi-block scans)
    static __device__ bool writeSums()     { return sums; };
    //! Returns true if this is a full scan -- all blocks process CTA_SIZE * SCAN_ELEMENTS_PER_THREAD elements
    static __device__ bool isFullBlock()   { return fullBlock; };
    
        
    //! The operator function used for the scan
    static __device__ T op(const T a, const T b)
    {
        return Operator<T, oper>::op(a, b);
    }  
    //! The identity value used by the scan
    static __device__ T identity() { return Operator<T, oper>::identity(); }
};
//! This is used to insert syncthreads to avoid perf loss caused by 128-bit 
//! load overlap that happens on G80.  This gives about a 15% boost on scans on 
//! G80.
//! @todo Parameterize this in case this perf detail changes on future GPUs.
#define DISALLOW_LOADSTORE_OVERLAP 1
/**
* @brief Handles loading input s_data from global memory to shared memory 
* (vec4 version)
*
* Load a chunk of 8*blockDim.x elements from global memory into a 
* shared memory array.  Each thread loads two T4 elements (where
* T4 is, e.g. int4 or float4), computes the scan of those two vec4s in 
* thread local arrays (in registers), and writes the two total sums of the
* vec4s into shared memory, where they will be cooperatively scanned with 
* the other partial sums by all threads in the CTA.
*
* @param[out] s_out The output (shared) memory array
* @param[out] threadScan0 Intermediate per-thread partial sums array 1
* @param[out] threadScan1 Intermediate per-thread partial sums array 2
* @param[in] d_in The input (device) memory array
* @param[in] numElements The number of elements in the array being scanned
* @param[in] iDataOffset the offset of the input array in global memory for this 
* thread block
* @param[out] ai The shared memory address for the thread's first element 
* (returned for reuse)
* @param[out] bi The shared memory address for the thread's second element 
* (returned for reuse)
* @param[out] aiDev The device memory address for this thread's first element 
* (returned for reuse)
* @param[out] biDev The device memory address for this thread's second element 
* (returned for reuse)
*/
template <class T, class traits> 
__device__ void loadSharedChunkFromMem4(T        *s_out,
                                        T        threadScan0[4],
                                        T        threadScan1[4],
                                        const T  *d_in,
                                        int      numElements, 
                                        int      iDataOffset,
                                        int      &ai, 
                                        int      &bi, 
                                        int      &aiDev, 
                                        int      &biDev)
{
    int thid = threadIdx.x;
    aiDev = iDataOffset + thid;
    biDev = aiDev + blockDim.x;
    // convert to 4-vector
    typename typeToVector<T,4>::Result  tempData;
    typename typeToVector<T,4>::Result* inData = (typename typeToVector<T,4>::Result*)d_in;
    ai = thid;
    bi = thid + blockDim.x;
    // read into tempData;
    if (traits::isBackward())
    {
        int i = aiDev * 4;
        if (traits::isFullBlock() || i + 3 < numElements) 
        {
            tempData       = inData[aiDev];
            threadScan0[3] = tempData.w;               
            threadScan0[2] = traits::op(tempData.z, threadScan0[3]);
            threadScan0[1] = traits::op(tempData.y, threadScan0[2]);
            threadScan0[0] = s_out[ai] 
                           = traits::op(tempData.x, threadScan0[1]);
        }
        else
        {
            threadScan0[3] = traits::identity();
            threadScan0[2] = traits::op(((i+2) < numElements) ? d_in[i+2] : traits::identity(), threadScan0[3]);
            threadScan0[1] = traits::op(((i+1) < numElements) ? d_in[i+1] : traits::identity(), threadScan0[2]);
            threadScan0[0] = s_out[ai] 
                           = traits::op((i     < numElements) ? d_in[i]   : traits::identity(), threadScan0[1]);
        }
#ifdef DISALLOW_LOADSTORE_OVERLAP
        __syncthreads();
#endif
        i = biDev * 4;
        if (traits::isFullBlock() || i + 3 < numElements)
        {
            tempData       = inData[biDev];
            threadScan1[3] = tempData.w;
            threadScan1[2] = traits::op(tempData.z, threadScan1[3]);
            threadScan1[1] = traits::op(tempData.y, threadScan1[2]);
            threadScan1[0] = s_out[bi] 
                           = traits::op(tempData.x, threadScan1[1]);
        }
        else
        {
            threadScan1[3] = traits::identity();
            threadScan1[2] = traits::op(((i+2) < numElements) ? d_in[i+2] : traits::identity(), threadScan1[3]);
            threadScan1[1] = traits::op(((i+1) < numElements) ? d_in[i+1] : traits::identity(), threadScan1[2]);
            threadScan1[0] = s_out[bi] 
                           = traits::op((i     < numElements) ? d_in[i]   : traits::identity(), threadScan1[1]);
        }
        __syncthreads();
        // reverse s_data in shared memory
        if (ai < CTA_SIZE)
        {       
            unsigned int leftIdx = ai;
            unsigned int rightIdx = (2 * CTA_SIZE - 1) - ai;
                
            if (leftIdx < rightIdx) 
            {
                T tmp           = s_out[leftIdx];
                s_out[leftIdx]  = s_out[rightIdx];
                s_out[rightIdx] = tmp;
            }
        }
        __syncthreads();
    }
    else
    {
        int i = aiDev * 4;
        if (traits::isFullBlock() || i + 3 < numElements)
        {
            tempData       = inData[aiDev];
            threadScan0[0] = tempData.x;           
            threadScan0[1] = traits::op(tempData.y, threadScan0[0]);
            threadScan0[2] = traits::op(tempData.z, threadScan0[1]);
            threadScan0[3] = s_out[ai] 
                           = traits::op(tempData.w, threadScan0[2]);
        }
        else
        {
            threadScan0[0] = (i < numElements) ? d_in[i] : traits::identity();
            threadScan0[1] = traits::op(((i+1) < numElements) ? d_in[i+1] : traits::identity(), threadScan0[0]);
            threadScan0[2] = traits::op(((i+2) < numElements) ? d_in[i+2] : traits::identity(), threadScan0[1]);
            threadScan0[3] = s_out[ai] 
                           = traits::op(((i+3) < numElements) ? d_in[i+3] : traits::identity(), threadScan0[2]);
        }
        
#ifdef DISALLOW_LOADSTORE_OVERLAP
        __syncthreads();
#endif
        i = biDev * 4;
        if (traits::isFullBlock() || i + 3 < numElements)
        {
            tempData       = inData[biDev];
            threadScan1[0] = tempData.x;           
            threadScan1[1] = traits::op(tempData.y, threadScan1[0]);
            threadScan1[2] = traits::op(tempData.z, threadScan1[1]);
            threadScan1[3] = s_out[bi] 
                           = traits::op(tempData.w, threadScan1[2]);
        }
        else
        {
            threadScan1[0] = (i < numElements) ? d_in[i] : traits::identity();
            threadScan1[1] = traits::op(((i+1) < numElements) ? d_in[i+1] : traits::identity(), threadScan1[0]);
            threadScan1[2] = traits::op(((i+2) < numElements) ? d_in[i+2] : traits::identity(), threadScan1[1]);
            threadScan1[3] = s_out[bi] 
                           = traits::op(((i+3) < numElements) ? d_in[i+3] : traits::identity(), threadScan1[2]);
        }  
        __syncthreads();
    }
}
/**
* @brief Handles storing result s_data from shared memory to global memory 
* (vec4 version)
*
* Store a chunk of SCAN_ELTS_PER_THREAD*blockDim.x elements from shared memory 
* into a device memory array.  Each thread stores reads two elements from shared
* memory, adds them to the intermediate sums computed in 
* loadSharedChunkFromMem4(), and writes two T4 elements (where
* T4 is, e.g. int4 or float4) to global memory.
*
* @param[out] d_out The output (device) memory array
* @param[in] threadScan0 Intermediate per-thread partial sums array 1
* (contents computed in loadSharedChunkFromMem4())
* @param[in] threadScan1 Intermediate per-thread partial sums array 2
* (contents computed in loadSharedChunkFromMem4())
* @param[in] s_in The input (shared) memory array
* @param[in] numElements The number of elements in the array being scanned
* @param[in] oDataOffset the offset of the output array in global memory 
* for this thread block
* @param[in] ai The shared memory address for the thread's first element 
* (computed in loadSharedChunkFromMem4())
* @param[in] bi The shared memory address for the thread's second element 
* (computed in loadSharedChunkFromMem4())
* @param[in] aiDev The device memory address for this thread's first element 
* (computed in loadSharedChunkFromMem4())
* @param[in] biDev The device memory address for this thread's second element 
* (computed in loadSharedChunkFromMem4())
*/
template <class T, class traits>
__device__ void storeSharedChunkToMem4(T   *d_out,
                                       T   threadScan0[4],
                                       T   threadScan1[4],
                                       T   *s_in,
                                       int numElements, 
                                       int oDataOffset,
                                       int ai, 
                                       int bi, 
                                       int aiDev, 
                                       int biDev)
{
    // Convert to 4-vector
    typename typeToVector<T,4>::Result tempData;
    typename typeToVector<T,4>::Result* outData = (typename typeToVector<T,4>::Result*)d_out;
    // write results to global memory
    if (traits::isBackward())
    {   
        if (ai < CTA_SIZE)
        {
            unsigned int leftIdx = ai;
            unsigned int rightIdx = (2 * CTA_SIZE - 1) - ai;
            
            if (leftIdx < rightIdx) 
            {
                T tmp = s_in[leftIdx];
                s_in[leftIdx] = s_in[rightIdx];
                s_in[rightIdx] = tmp;
            }
        }
        __syncthreads();
        T temp = s_in[ai];
        if (traits::isExclusive())
        {
            tempData.w = temp;
            tempData.z = traits::op(temp, threadScan0[3]);
            tempData.y = traits::op(temp, threadScan0[2]);
            tempData.x = traits::op(temp, threadScan0[1]);
        }
        else
        {
            tempData.w = traits::op(temp, threadScan0[3]);
            tempData.z = traits::op(temp, threadScan0[2]);
            tempData.y = traits::op(temp, threadScan0[1]);
            tempData.x = traits::op(temp, threadScan0[0]);
        }
        int i = aiDev * 4;
        if (traits::isFullBlock() || i + 3 < numElements)
        {
            outData[aiDev] = tempData;
        }
        else
        {
            if (i   < numElements) { d_out[i]   = tempData.x;
            if (i+1 < numElements) { d_out[i+1] = tempData.y;
            if (i+2 < numElements) { d_out[i+2] = tempData.z; }}}     
        }
#ifdef DISALLOW_LOADSTORE_OVERLAP
        __syncthreads();
#endif
        temp = s_in[bi];
        if (traits::isExclusive())
        {
            tempData.w = temp;
            tempData.z = traits::op(temp, threadScan1[3]);
            tempData.y = traits::op(temp, threadScan1[2]);
            tempData.x = traits::op(temp, threadScan1[1]);
        }
        else
        {
            tempData.w = traits::op(temp, threadScan1[3]);
            tempData.z = traits::op(temp, threadScan1[2]);
            tempData.y = traits::op(temp, threadScan1[1]);
            tempData.x = traits::op(temp, threadScan1[0]);
        }
        i = biDev * 4;
        if (traits::isFullBlock() || i + 3 < numElements)
        {
            outData[biDev] = tempData;
        }
        else
        {
            if (i   < numElements) { d_out[i]   = tempData.x;
            if (i+1 < numElements) { d_out[i+1] = tempData.y;
            if (i+2 < numElements) { d_out[i+2] = tempData.z; }}}     
        }
    }
    else
    {
        T temp;
        temp = s_in[ai]; 
        if (traits::isExclusive())
        {
            tempData.x = temp;
            tempData.y = traits::op(temp, threadScan0[0]);
            tempData.z = traits::op(temp, threadScan0[1]);
            tempData.w = traits::op(temp, threadScan0[2]);
        }
        else
        {
            tempData.x = traits::op(temp, threadScan0[0]);
            tempData.y = traits::op(temp, threadScan0[1]);
            tempData.z = traits::op(temp, threadScan0[2]);
            tempData.w = traits::op(temp, threadScan0[3]);
        }
        int i = aiDev * 4;
        if (traits::isFullBlock() || i + 3 < numElements)
        {                       
            outData[aiDev] = tempData; 
        }
        else 
        {       
            // we can't use vec4 because the original array isn't a multiple of 
            // 4 elements
            if ( i    < numElements) { d_out[i]   = tempData.x;
            if ((i+1) < numElements) { d_out[i+1] = tempData.y;
            if ((i+2) < numElements) { d_out[i+2] = tempData.z; } } }
        }
#ifdef DISALLOW_LOADSTORE_OVERLAP
        __syncthreads();
#endif
        temp       = s_in[bi]; 
        if (traits::isExclusive())
        {
            tempData.x = temp;
            tempData.y = traits::op(temp, threadScan1[0]);
            tempData.z = traits::op(temp, threadScan1[1]);
            tempData.w = traits::op(temp, threadScan1[2]);
        }
        else
        {
            tempData.x = traits::op(temp, threadScan1[0]);
            tempData.y = traits::op(temp, threadScan1[1]);
            tempData.z = traits::op(temp, threadScan1[2]);
            tempData.w = traits::op(temp, threadScan1[3]);
        }
        i = biDev * 4;
        if (traits::isFullBlock() || i + 3 < numElements)
        {
            outData[biDev] = tempData;
        }
        else 
        {
            // we can't use vec4 because the original array isn't a multiple of 
            // 4 elements
            if ( i    < numElements) { d_out[i]   = tempData.x;
            if ((i+1) < numElements) { d_out[i+1] = tempData.y;
            if ((i+2) < numElements) { d_out[i+2] = tempData.z; } } }
        }
    }
}
/** @brief Scan all warps of a CTA without synchronization
  * 
  * The warp-scan algorithm breaks a block of data into warp-sized chunks, and
  * scans the chunks independently with a warp of threads each.  Because warps
  * execute instructions in SIMD fashion, there is no need to synchronize in 
  * order to share data within a warp (only across warps).  Also, in SIMD the 
  * most efficient algorithm is a step-efficient algorithm.  Therefore, within
  * each warp we use a Hillis-and-Steele-style scan that takes log2(N) steps
  * to scan the warp [Daniel Hillis and Guy Steele 1986], rather than the 
  * work-efficient tree-based algorithm described by Guy Blelloch [1990] that 
  * takes 2 * log(N) steps and is in general more complex to implement.  
  * Previous versions of CUDPP used the Blelloch algorithm.  For current GPUs, 
  * the warp size is 32, so this takes five steps per warp.
  *
  * Each thread is responsible for a single element of the array to be scanned.
  * Each thread inputs a single value to the scan via \a val and returns 
  * its own scanned result element.  The threads of each warp cooperate 
  * via the shared memory array \a s_data to scan WARP_SIZE elements.
  *
  * Template parameter \a maxlevel allows this warpscan to be performed on
  * partial warps.  For example, if only the first 8 elements of each warp need
  * to be scanned, then warpscan only performs log2(8)=3 steps rather than 5.
  *
  * The computation uses 2 * WARP_SIZE elements of shared memory per warp to
  * enable warps to offset beyond their input data and receive the identity 
  * element without using any branch instructions.
  * 
  * \note s_data is declared volatile here to prevent the compiler from 
  * optimizing away writes to shared memory, and ensure correct intrawarp 
  * communication in the absence of __syncthreads.
  *
  * @return The result of the warp scan for the current thread
  * @param[in] val The current threads's input to the scan
  * @param[in,out] s_data A pointer to a temporary shared array of 2*CTA_SIZE 
  * elements used to compute the warp scans
  */
template<class T, class traits,int maxlevel>
__device__ T warpscan(T val, volatile T* s_data)
{
    // The following is the same as 2 * 32 * warpId + threadInWarp = 
    // 64*(threadIdx.x >> 5) + (threadIdx.x & (WARP_SIZE-1))
    int idx = 2 * threadIdx.x - (threadIdx.x & (WARP_SIZE-1));
    s_data[idx] = traits::identity();
    idx += WARP_SIZE;
    T t = s_data[idx] = val;  __EMUSYNC;
        // This code is needed because the warp size of device emulation
        // is only 1 thread, so sync-less cooperation within a warp doesn't 
        // work.
#ifdef __DEVICE_EMULATION__
    t = s_data[idx -  1]; __EMUSYNC; 
    s_data[idx] = traits::op(s_data[idx],t); __EMUSYNC;
    t = s_data[idx -  2]; __EMUSYNC; 
    s_data[idx] = traits::op(s_data[idx],t); __EMUSYNC;
    t = s_data[idx -  4]; __EMUSYNC; 
    s_data[idx] = traits::op(s_data[idx],t); __EMUSYNC;
    t = s_data[idx -  8]; __EMUSYNC; 
    s_data[idx] = traits::op(s_data[idx],t); __EMUSYNC;
    t = s_data[idx - 16]; __EMUSYNC; 
    s_data[idx] = traits::op(s_data[idx],t); __EMUSYNC;
#else
    if (0 <= maxlevel) { s_data[idx] = t = traits::op(t, s_data[idx - 1]); }
    if (1 <= maxlevel) { s_data[idx] = t = traits::op(t, s_data[idx - 2]); }
    if (2 <= maxlevel) { s_data[idx] = t = traits::op(t, s_data[idx - 4]); }
    if (3 <= maxlevel) { s_data[idx] = t = traits::op(t, s_data[idx - 8]); }
    if (4 <= maxlevel) { s_data[idx] = t = traits::op(t, s_data[idx -16]); }
#endif
    return s_data[idx-1];      // convert inclusive -> exclusive
}
/** @brief Perform a full CTA scan using the warp-scan algorithm
  * 
  * As described in the comment for warpscan(), the warp-scan algorithm breaks 
  * a block of data into warp-sized chunks, and scans the chunks independently 
  * with a warp of threads each.  To complete the scan, each warp <i>j</i> then 
  * writes its last element to element <i>j</i> of a temporary shared array.
  * Then a single warp exclusive-scans these "warp sums".  Finally, each thread
  * adds the result of the warp sum scan to the result of the scan from the 
  * first pass.
  *
  * Because we scan 2*CTA_SIZE elements per thread, we have to call warpscan
  * twice.
  *
  * @param x The first input value for the current thread
  * @param y The second input value for the current thread
  * @param s_data Temporary shared memory space of 2*CTA_SIZE elements for 
  * performing the scan
  */
template <class T, class traits>
__device__ void scanWarps(T x, T y, 
                          T *s_data)
{       
    T val  = warpscan<T, traits, 4>(x, s_data);
    __syncthreads(); 
    T val2 = warpscan<T, traits, 4>(y, s_data);
    
    int idx = threadIdx.x;
    if ((idx & 31)==31)
    {
        s_data[idx >> 5]                = traits::op(val, x);
        s_data[(idx + blockDim.x) >> 5] = traits::op(val2, y);
    }
    __syncthreads();
#ifndef __DEVICE_EMULATION__
    if (idx < 32)
#endif
    {
        s_data[idx] = warpscan<T,traits,(LOG_CTA_SIZE-LOG_WARP_SIZE+1)>(s_data[idx], s_data);
    }
    __syncthreads();
    val  = traits::op(val, s_data[idx >> 5]);
    val2 = traits::op(val2, s_data[(idx + blockDim.x) >> 5]);
    __syncthreads();
    s_data[idx] = val;
    s_data[idx+blockDim.x] = val2;
}
/**
* @brief CTA-level scan routine; scans s_data in shared memory in each thread block
*
* This function is the main CTA-level scan function.  It may be called by other 
* CUDA __global__ or __device__ functions. This function scans 2 * CTA_SIZE elements.
* Each thread is responsible for one element in each half of the input array.
* \note This code is intended to be run on a CTA of 128 threads.  Other sizes are
* untested.
* 
* @param[in] s_data The array to be scanned in shared memory
* @param[out] d_blockSums Array of per-block sums
* @param[in] blockSumIndex Location in \a d_blockSums to which to write this block's sum
*/
template <class T, class traits>
__device__ void scanCTA(T            *s_data, 
                        T            *d_blockSums, 
                        unsigned int blockSumIndex)
{
    T val  = s_data[threadIdx.x];
    T val2 = s_data[threadIdx.x + blockDim.x];
    __syncthreads();     
    scanWarps<T,traits>(val, val2, s_data);
    __syncthreads();  
    if (traits::writeSums() && threadIdx.x == blockDim.x - 1)
    {
        d_blockSums[blockSumIndex] = traits::op(val2, s_data[threadIdx.x + blockDim.x]);
    }
    
    
#ifdef __DEVICE_EMULATION__
    // must sync in emulation mode when doing backward scans, because otherwise the 
    // shared memory array will get reversed before the block sums are read!
    if (traits::isBackward())
        __syncthreads();
#endif
}
/** @} */ // end scan functions
/** @} */ // end cudpp_cta
 |