1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
// -------------------------------------------------------------
// CUDPP -- CUDA Data Parallel Primitives library
// -------------------------------------------------------------
// $Revision: 5289 $
// $Date: 2010-11-23 13:04:43 -0700 (Tue, 23 Nov 2010) $
// -------------------------------------------------------------
// This source code is distributed under the terms of license.txt in
// the root directory of this source distribution.
// -------------------------------------------------------------
/**
* @file
* cudpp.h
*
* @brief Main library header file. Defines public interface.
*
* The CUDPP public interface is a C-only interface to enable
* linking with code written in other languages (e.g. C, C++,
* and Fortran). While the internals of CUDPP are not limited
* to C (C++ features are used), the public interface is
* entirely C (thus it is declared "extern C").
*/
/**
* \mainpage
*
* \section introduction Introduction
*
* CUDPP is the CUDA Data Parallel Primitives Library. CUDPP is a
* library of data-parallel algorithm primitives such as
* parallel-prefix-sum ("scan"), parallel sort and parallel reduction.
* Primitives such as these are important building blocks for a wide
* variety of data-parallel algorithms, including sorting, stream
* compaction, and building data structures such as trees and
* summed-area tables.
*
* \section overview Overview Presentation
*
* A brief set of slides that describe the features, design principles,
* applications and impact of CUDPP is available here:
* <a href="http://cudpp.googlecode.com/svn/trunk/cudpp/doc/CUDPP_slides.pdf">CUDPP Presentation</a>.
*
* \section homepage Homepage
* Homepage for CUDPP: http://code.google.com/p/cudpp
*
* Announcements and discussion of CUDPP are hosted on the
* <a href="http://groups.google.com/group/cudpp?hl=en">CUDPP Google Group</a>.
*
* \section getting-started Getting Started with CUDPP
*
* You may want to start by browsing the \link publicInterface CUDPP Public
* Interface\endlink. For information on building CUDPP, see
* \ref building-cudpp "Building CUDPP".
*
* The "apps" subdirectory included with CUDPP has a few source code samples
* that use CUDPP:
* - \ref example_simpleCUDPP "simpleCUDPP", a simple example of using
* cudppScan()
* - satGL, an example of using cudppMultiScan() to generate a summed-area
* table (SAT) of a scene rendered in real time. The SAT is then used to simulate
* depth of field blur.
* - cudpp_testrig, a comprehensive test application for all the functionality
* of CUDPP
*
* We have also provided a code walkthrough of the
* \ref example_simpleCUDPP "simpleCUDPP" example.
*
* \section getting-help Getting Help and Reporting Problems
*
* To get help using CUDPP, please use the
* <a href="http://groups.google.com/group/cudpp?hl=en">CUDPP Google Group</a>.
*
* To report CUDPP bugs or request features, you may use either the above
* CUDPP Google Group, or you can file an issue directly using
* <a href="http://code.google.com/p/cudpp/issues/list">Google Code</a>.
*
* \section release-notes Release Notes
*
* For specific release details see the \ref changelog "Change Log".
*
* This release (1.1.1) is a bugfix release to CUDPP 1.1 that includes
* fixes to support CUDA 3.0 and the new NVIDIA Fermi architecture,
* including GeForce 400 series and Tesla 20 series GPUs. It also has
* bug fixes for 64-bit OSes.
*
* \section opSys Operating System Support
*
* This release (1.1.1) has been thoroughly tested on the following OSes.
* - Windows XP (32-bit) (CUDA 2.2, 3.0)
* - Windows 7 (64-bit) (CUDA 3.0)
* - Redhat Enterprise Linux 5 (64-bit) (CUDA 3.0)
* - and Mac OS X 10.6 (Snow Leopard, 64-bit) (CUDA 3.0)
*
* We expect CUDPP to build and run correctly on other flavors of Linux
* and Windows, but these are not actively tested by the developers at
* this time.
*
* Notes: CUDPP is not compatible with CUDA 2.1. A compiler bug in 2.1
* causes the compiler to crash. Also, starting with CUDPP 1.1.1, we are
* no longer testing CUDA device emulation, because it is deprecated in
* CUDA 3.0 and will be removed from future CUDA versions.
*
* \section cuda CUDA
* CUDPP is implemented in
* <a href="http://developer.nvidia.com/cuda">CUDA C/C++</a>. It requires the
* CUDA Toolkit version 2.2 or later. Please see the NVIDIA
* <a href="http://developer.nvidia.com/cuda">CUDA</a> homepage to download
* CUDA as well as the CUDA Programming Guide and CUDA SDK, which includes many
* CUDA code examples. Some of the samples in the CUDA SDK (including
* "marchingCubes", "lineOfSight", and radixSort) also use CUDPP.
*
* \section design-goals Design Goals
* Design goals for CUDPP include:
*
* - Performance. We aim to provide best-of-class performance for our
* primitives. We welcome suggestions and contributions that will improve
* CUDPP performance. We also want to provide primitives that can be easily
* benchmarked, and compared against other implementations on GPUs and other
* processors.
* - Modularity. We want our primitives to be easily included in other
* applications. To that end we have made the following design decisions:
* - CUDPP is provided as a library that can link against other applications.
* - CUDPP calls run on the GPU on GPU data. Thus they can be used
* as standalone calls on the GPU (on GPU data initialized by the
* calling application) and, more importantly, as GPU components in larger
* CPU/GPU applications.
* - CUDPP is implemented as 4 layers:
* -# The \link publicInterface Public Interface\endlink is the external
* library interface, which is the intended entry point for most
* applications. The public interface calls into the
* \link cudpp_app Application-Level API\endlink.
* -# The \link cudpp_app Application-Level API\endlink comprises functions
* callable from CPU code. These functions execute code jointly on the
* CPU (host) and the GPU by calling into the
* \link cudpp_kernel Kernel-Level API\endlink below them.
* -# The \link cudpp_kernel Kernel-Level API\endlink comprises functions
* that run entirely on the GPU across an entire grid of thread blocks.
* These functions may call into the \link cudpp_cta CTA-Level API\endlink
* below them.
* -# The \link cudpp_cta CTA-Level API\endlink comprises functions that run
* entirely on the GPU within a single Cooperative Thread Array (CTA,
* aka thread block). These are low-level functions that implement core
* data-parallel algorithms, typically by processing data within shared
* (CUDA \c __shared__) memory.
*
* Programmers may use any of the lower three CUDPP layers in their own
* programs by building the source directly into their application. However,
* the typical usage of CUDPP is to link to the library and invoke functions in
* the CUDPP \link publicInterface Public Interface\endlink, as in the
* \ref example_simpleCUDPP "simpleCUDPP", satGL, and cudpp_testrig application
* examples included in the CUDPP distribution.
*
* In the future, if and when CUDA supports building device-level libraries, we
* hope to enhance CUDPP to ease the use of CUDPP internal algorithms at all
* levels.
*
* \subsection uses Use Cases
* We expect the normal use of CUDPP will be in one of two ways:
* -# Linking the CUDPP library against another application.
* -# Running our "test" application, cudpp_testrig, that exercises
* CUDPP functionality.
*
* \section references References
* The following publications describe work incorporated in CUDPP.
*
* - Mark Harris, Shubhabrata Sengupta, and John D. Owens. "Parallel Prefix Sum (Scan) with CUDA". In Hubert Nguyen, editor, <i>GPU Gems 3</i>, chapter 39, pages 851–876. Addison Wesley, August 2007. http://graphics.idav.ucdavis.edu/publications/print_pub?pub_id=916
* - Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. "Scan Primitives for GPU Computing". In <i>Graphics Hardware 2007</i>, pages 97–106, August 2007. http://graphics.idav.ucdavis.edu/publications/print_pub?pub_id=915
* - Shubhabrata Sengupta, Mark Harris, and Michael Garland. "Efficient parallel scan algorithms for GPUs". NVIDIA Technical Report NVR-2008-003, December 2008. http://mgarland.org/papers.html#segscan-tr
* - Nadathur Satish, Mark Harris, and Michael Garland. "Designing Efficient Sorting Algorithms for Manycore GPUs". In <i>Proceedings of the 23rd IEEE International Parallel & Distributed Processing Symposium</i>, May 2009. http://mgarland.org/papers.html#gpusort
* - Stanley Tzeng, Li-Yi Wei. "Parallel White Noise Generation on a GPU via Cryptographic Hash". In <i>Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games</i>, pages 79–87, February 2008. http://research.microsoft.com/apps/pubs/default.aspx?id=70502
*
* Many researchers are using CUDPP in their work, and there are many publications
* that have used it \ref cudpp_refs "(references)". If your work uses CUDPP, please
* let us know by sending us a reference (preferably in BibTeX format) to your work.
*
* \section citing Citing CUDPP
*
* If you make use of CUDPP primitives in your work and want to cite
* CUDPP (thanks!), we would prefer for you to cite the appropriate
* papers above, since they form the core of CUDPP. To be more specific,
* the GPU Gems paper describes (unsegmented) scan, multi-scan for
* summed-area tables, and stream compaction. The NVIDIA technical report
* describes the current scan and segmented scan algorithms used in the
* library, and the Graphics Hardware paper describes an earlier
* implementation of segmented scan, quicksort, and sparse matrix-vector
* multiply. The IPDPS paper describes the radix sort used in CUDPP, and
* the I3D paper describes the random number generation algorithm.
*
* \section credits Credits
* \subsection developers CUDPP Developers
* - <a href="http://www.markmark.net">Mark Harris</a>, NVIDIA Corporation
* - <a href="http://www.ece.ucdavis.edu/~jowens/">John D. Owens</a>, University of California, Davis
* - <a href="http://graphics.cs.ucdavis.edu/~shubho/">Shubho Sengupta</a>, University of California, Davis
* - Stanley Tzeng, University of California, Davis
* - <a href="http://www.ece.ucdavis.edu/~yaozhang/">Yao Zhang</a>, University of California, Davis
* - <a href="http://www.ece.ucdavis.edu/~aaldavid/">Andrew Davidson</a>, University of California, Davis (formerly Louisiana State University)
*
* \subsection contributors Other CUDPP Contributors
* - <a href="http://www.eecs.berkeley.edu/~nrsatish/">Nadatur Satish</a>, University of California, Berkeley
*
* \subsection acknowledgments Acknowledgments
*
* Thanks to Jim Ahrens, Timo Aila, Nathan Bell, Ian Buck, Guy Blelloch,
* Jeff Bolz, Michael Garland, Jeff Inman, Eric Lengyel, Samuli Laine,
* David Luebke, Pat McCormick, and Richard Vuduc for their contributions
* during the development of this library.
*
* CUDPP Developers from UC Davis thank their funding agencies:
* - Department of Energy Early Career Principal Investigator Award
* DE-FG02-04ER25609
* - SciDAC Institute for Ultrascale Visualization (http://www.iusv.org/)
* - Los Alamos National Laboratory
* - National Science Foundation (grant 0541448)
* - Generous hardware donations from NVIDIA
*
* \section license-overview CUDPP Copyright and Software License
* CUDPP is copyright The Regents of the University of California, Davis campus
* and NVIDIA Corporation. The library, examples, and all source code are
* released under the BSD license, designed to encourage reuse of this software
* in other projects, both commercial and non-commercial. For details, please
* see the \ref license page.
*
* Note that prior to release 1.1 of CUDPP, the license used was a modified
* BSD license. With release 1.1, this license was replaced with the pure BSD
* license to facilitate the use of open source hosting of the code.
*/
/**
* @page license CUDPP License
*
* \section licenseBSD CUDPP License
*
* CUDPP is released under the
* <a href="http://www.opensource.org/licenses/bsd-license.php">BSD license</a>.
*
* @include license.txt
*
*/
/**
* @page changelog CUDPP Change Log
*
* @include changelog.txt
*/
/**
* @page cudpp_refs Publications that use CUDPP
*
* @htmlinclude doc/bib/cudpp_refs.html
*/
/**
* @page cudpp_refs_bib Bibliography for publications that use CUDPP
*
* @htmlinclude doc/bib/cudpp_refs_bib.html
*/
/**
* @page building-cudpp Building CUDPP
*
* CUDPP has currently been tested in Windows XP, Windows Vista, Mac OS X
* and Linux. See \ref release-notes for release specific platform support.
*
* \section build-win32 Building CUDPP on Windows XP
*
* CUDPP can be built using either or MSVC 8 (2005) or MSVC 9 (2008). To
* build, open cudpp/cudpp.sln. Then you can build the library
* using the "build" command as you would with any other workspace. There are
* four configurations: debug, release, emudebug, and emurelease. The first
* two are self-explanatory. The second two are built to use CUDA device
* emulation, meaning they will be run (slowly) on the CPU.
*
* \section build-linux Building CUDPP on Linux and Mac OS X
*
* CUDPP can be built using standard g++ and Make tools on Linux, by typing
* "make" in the "cudpp/" subdirectory. Before building CUDPP, you should
* first build the CUDA Utility Library (libcutil) by typing "make; make dbg=1"
* in the "common/" subdirectory. This will generate libcutil.a and
* libcutilD.a.
*
* The makefile for CUDPP and all sample applications take the optional
* arguments "emu=1" and "dbg=1". The former builds CUDPP for device emulation,
* and the latter for debugging. The two flags can be combined. "verbose=1"
* can be used to see all compiler output.
*
* \section build-apps Building CUDPP Sample Applications
*
* The sample applications in the "apps/" subdirectory can be built exactly
* like CUDPP is--either by opening the appropriate .sln/.vcproj file in MSVC
* in Windows, or using "make" in Linux.
*
* On some Linux installations you will get linker errors relating to "-lXi"
* and "-lXmu". To fix this, you will need to install libXi and libXmu. On
* Debian and Ubuntu, for example, you can simply run
* "sudo apt-get install libxi-dev", and
* "sudo apt-get install libxmu-dev"
*
*/
#ifndef __CUDPP_H__
#define __CUDPP_H__
#include <cstdlib> // for size_t
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief CUDPP Result codes returned by CUDPP API functions.
*/
enum CUDPPResult
{
CUDPP_SUCCESS = 0, /**< No error. */
CUDPP_ERROR_INVALID_HANDLE, /**< Specified handle (for example,
to a plan) is invalid. **/
CUDPP_ERROR_ILLEGAL_CONFIGURATION, /**< Specified configuration is
illegal. For example, an
invalid or illogical
combination of options. */
CUDPP_ERROR_UNKNOWN = 9999 /**< Unknown or untraceable error. */
};
/**
* @brief Options for configuring CUDPP algorithms.
*
* @see CUDPPConfiguration, cudppPlan, CUDPPAlgorithm
*/
enum CUDPPOption
{
CUDPP_OPTION_FORWARD = 0x1, /**< Algorithms operate forward:
* from start to end of input
* array */
CUDPP_OPTION_BACKWARD = 0x2, /**< Algorithms operate backward:
* from end to start of array */
CUDPP_OPTION_EXCLUSIVE = 0x4, /**< Exclusive (for scans) - scan
* includes all elements up to (but
* not including) the current
* element */
CUDPP_OPTION_INCLUSIVE = 0x8, /**< Inclusive (for scans) - scan
* includes all elements up to and
* including the current element */
CUDPP_OPTION_CTA_LOCAL = 0x10, /**< Algorithm performed only on
* the CTAs (blocks) with no
* communication between blocks.
* @todo Currently ignored. */
CUDPP_OPTION_KEYS_ONLY = 0x20, /**< No associated value to a key
* (for global radix sort) */
CUDPP_OPTION_KEY_VALUE_PAIRS = 0x40, /**< Each key has an associated value */
};
/**
* @brief Datatypes supported by CUDPP algorithms.
*
* @see CUDPPConfiguration, cudppPlan
*/
enum CUDPPDatatype
{
CUDPP_CHAR, //!< Character type (C char)
CUDPP_UCHAR, //!< Unsigned character (byte) type (C unsigned char)
CUDPP_INT, //!< Integer type (C int)
CUDPP_UINT, //!< Unsigned integer type (C unsigned int)
CUDPP_FLOAT //!< Float type (C float)
};
/**
* @brief Operators supported by CUDPP algorithms (currently scan and
* segmented scan).
*
* These are all binary associative operators.
*
* @see CUDPPConfiguration, cudppPlan
*/
enum CUDPPOperator
{
CUDPP_ADD, //!< Addition of two operands
CUDPP_MULTIPLY, //!< Multiplication of two operands
CUDPP_MIN, //!< Minimum of two operands
CUDPP_MAX //!< Maximum of two operands
};
/**
* @brief Algorithms supported by CUDPP. Used to create appropriate plans using
* cudppPlan.
*
* @see CUDPPConfiguration, cudppPlan
*/
enum CUDPPAlgorithm
{
CUDPP_SCAN, //!< Scan or prefix-sum
CUDPP_SEGMENTED_SCAN, //!< Segmented scan
CUDPP_COMPACT, //!< Stream compact
CUDPP_REDUCE, //!< Parallel reduction (NOTE: currently unimplemented)
CUDPP_SORT_RADIX, //!< Radix sort
CUDPP_SPMVMULT, //!< Sparse matrix-dense vector multiplication
CUDPP_RAND_MD5, //!< PseudoRandom Number Generator using MD5 hash algorithm
CUDPP_ALGORITHM_INVALID, //!< Placeholder at end of enum
};
/**
* @brief Configuration struct used to specify algorithm, datatype,
* operator, and options when creating a plan for CUDPP algorithms.
*
* @see cudppPlan
*/
struct CUDPPConfiguration
{
CUDPPAlgorithm algorithm; //!< The algorithm to be used
CUDPPOperator op; //!< The numerical operator to be applied
CUDPPDatatype datatype; //!< The datatype of the input arrays
unsigned int options; //!< Options to configure the algorithm
};
#define CUDPP_INVALID_HANDLE 0xC0DABAD1
typedef size_t CUDPPHandle;
/* To use CUDPP as a static library, #define CUDPP_STATIC_LIB before
* including cudpp.h
*/
#define CUDPP_STATIC_LIB
#ifndef CUDPP_DLL
#ifdef _WIN32
#ifdef CUDPP_STATIC_LIB
#define CUDPP_DLL
#else
#ifdef BUILD_DLL
#define CUDPP_DLL __declspec(dllexport)
#else
#define CUDPP_DLL __declspec(dllimport)
#endif
#endif
#else
#define CUDPP_DLL
#endif
#endif
// Plan allocation (for scan, sort, and compact)
CUDPP_DLL
CUDPPResult cudppPlan(CUDPPHandle *planHandle,
CUDPPConfiguration config,
size_t n,
size_t rows,
size_t rowPitch);
CUDPP_DLL
CUDPPResult cudppDestroyPlan(CUDPPHandle plan);
// Scan and sort algorithms
CUDPP_DLL
CUDPPResult cudppScan(CUDPPHandle planHandle,
void *d_out,
const void *d_in,
size_t numElements);
CUDPP_DLL
CUDPPResult cudppMultiScan(CUDPPHandle planHandle,
void *d_out,
const void *d_in,
size_t numElements,
size_t numRows);
CUDPP_DLL
CUDPPResult cudppSegmentedScan(CUDPPHandle planHandle,
void *d_out,
const void *d_idata,
const unsigned int *d_iflags,
size_t numElements);
CUDPP_DLL
CUDPPResult cudppCompact(CUDPPHandle planHandle,
void *d_out,
size_t *d_numValidElements,
const void *d_in,
const unsigned int *d_isValid,
size_t numElements);
CUDPP_DLL
CUDPPResult cudppSort(CUDPPHandle planHandle,
void *d_keys,
void *d_values,
int keybits,
size_t numElements);
// Sparse matrix allocation
CUDPP_DLL
CUDPPResult cudppSparseMatrix(CUDPPHandle *sparseMatrixHandle,
CUDPPConfiguration config,
size_t n,
size_t rows,
const void *A,
const unsigned int *h_rowIndices,
const unsigned int *h_indices);
CUDPP_DLL
CUDPPResult cudppDestroySparseMatrix(CUDPPHandle sparseMatrixHandle);
// Sparse matrix-vector algorithms
CUDPP_DLL
CUDPPResult cudppSparseMatrixVectorMultiply(CUDPPHandle sparseMatrixHandle,
void *d_y,
const void *d_x);
// random number generation algorithms
CUDPP_DLL
CUDPPResult cudppRand(CUDPPHandle planHandle,void * d_out, size_t numElements);
CUDPP_DLL
CUDPPResult cudppRandSeed(const CUDPPHandle planHandle, unsigned int seed);
#ifdef __cplusplus
}
#endif
#endif
// Leave this at the end of the file
// Local Variables:
// mode:c++
// c-file-style: "NVIDIA"
// End:
|