File: cudpp.h

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (525 lines) | stat: -rw-r--r-- 22,068 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
// -------------------------------------------------------------
// CUDPP -- CUDA Data Parallel Primitives library
// -------------------------------------------------------------
// $Revision: 5289 $
// $Date: 2010-11-23 13:04:43 -0700 (Tue, 23 Nov 2010) $
// -------------------------------------------------------------
// This source code is distributed under the terms of license.txt in
// the root directory of this source distribution.
// -------------------------------------------------------------

/**
 * @file
 * cudpp.h
 *
 * @brief Main library header file.  Defines public interface.
 *
 * The CUDPP public interface is a C-only interface to enable
 * linking with code written in other languages (e.g. C, C++,
 * and Fortran).  While the internals of CUDPP are not limited
 * to C (C++ features are used), the public interface is
 * entirely C (thus it is declared "extern C").
 */

/**
 * \mainpage
 *
 * \section introduction Introduction
 *
 * CUDPP is the CUDA Data Parallel Primitives Library. CUDPP is a
 * library of data-parallel algorithm primitives such as
 * parallel-prefix-sum ("scan"), parallel sort and parallel reduction.
 * Primitives such as these are important building blocks for a wide
 * variety of data-parallel algorithms, including sorting, stream
 * compaction, and building data structures such as trees and
 * summed-area tables.
 *
 * \section overview Overview Presentation
 *
 * A brief set of slides that describe the features, design principles,
 * applications and impact of CUDPP is available here:
 * <a href="http://cudpp.googlecode.com/svn/trunk/cudpp/doc/CUDPP_slides.pdf">CUDPP Presentation</a>.
 *
 * \section homepage Homepage
 * Homepage for CUDPP: http://code.google.com/p/cudpp
 *
 * Announcements and discussion of CUDPP are hosted on the
 * <a href="http://groups.google.com/group/cudpp?hl=en">CUDPP Google Group</a>.
 *
 * \section getting-started Getting Started with CUDPP
 *
 * You may want to start by browsing the \link publicInterface CUDPP Public
 * Interface\endlink. For information on building CUDPP, see
 * \ref building-cudpp "Building CUDPP".
 *
 * The "apps" subdirectory included with CUDPP has a few source code samples
 * that use CUDPP:
 * - \ref example_simpleCUDPP "simpleCUDPP", a simple example of using
 * cudppScan()
 * - satGL, an example of using cudppMultiScan() to generate a summed-area
 * table (SAT) of a scene rendered in real time.  The SAT is then used to simulate
 * depth of field blur.
 * - cudpp_testrig, a comprehensive test application for all the functionality
 * of CUDPP
 *
 * We have also provided a code walkthrough of the
 * \ref example_simpleCUDPP "simpleCUDPP" example.
 *
 * \section getting-help Getting Help and Reporting Problems
 *
 * To get help using CUDPP, please use the
 * <a href="http://groups.google.com/group/cudpp?hl=en">CUDPP Google Group</a>.
 *
 * To report CUDPP bugs or request features, you may use either the above
 * CUDPP Google Group, or you can file an issue directly using
 * <a href="http://code.google.com/p/cudpp/issues/list">Google Code</a>.
 *
 * \section release-notes Release Notes
 *
 * For specific release details see the \ref changelog "Change Log".
 *
 * This release (1.1.1) is a bugfix release to CUDPP 1.1 that includes
 * fixes to support CUDA 3.0 and the new NVIDIA Fermi architecture,
 * including GeForce 400 series and Tesla 20 series GPUs.  It also has
 * bug fixes for 64-bit OSes.
 *
 * \section opSys Operating System Support
 *
 * This release (1.1.1) has been thoroughly tested on the following OSes.
 * - Windows XP (32-bit) (CUDA 2.2, 3.0)
 * - Windows 7 (64-bit) (CUDA 3.0)
 * - Redhat Enterprise Linux 5 (64-bit) (CUDA 3.0)
 * - and Mac OS X 10.6 (Snow Leopard, 64-bit) (CUDA 3.0)
 *
 * We expect CUDPP to build and run correctly on other flavors of Linux
 * and Windows, but these are not actively tested by the developers at
 * this time.
 *
 * Notes: CUDPP is not compatible with CUDA 2.1.  A compiler bug in 2.1
 * causes the compiler to crash.  Also, starting with CUDPP 1.1.1, we are
 * no longer testing CUDA device emulation, because it is deprecated in
 * CUDA 3.0 and will be removed from future CUDA versions.
 *
 * \section cuda CUDA
 * CUDPP is implemented in
 * <a href="http://developer.nvidia.com/cuda">CUDA C/C++</a>. It requires the
 * CUDA Toolkit version 2.2 or later.  Please see the NVIDIA
 * <a href="http://developer.nvidia.com/cuda">CUDA</a> homepage to download
 * CUDA as well as the CUDA Programming Guide and CUDA SDK, which includes many
 * CUDA code examples.  Some of the samples in the CUDA SDK (including
 * "marchingCubes", "lineOfSight", and radixSort) also use CUDPP.
 *
 * \section design-goals Design Goals
 * Design goals for CUDPP include:
 *
 * - Performance. We aim to provide best-of-class performance for our
 *   primitives. We welcome suggestions and contributions that will improve
 *   CUDPP performance. We also want to provide primitives that can be easily
 *   benchmarked, and compared against other implementations on GPUs and other
 *   processors.
 * - Modularity. We want our primitives to be easily included in other
 *   applications. To that end we have made the following design decisions:
 *   - CUDPP is provided as a library that can link against other applications.
 *   - CUDPP calls run on the GPU on GPU data. Thus they can be used
 *     as standalone calls on the GPU (on GPU data initialized by the
 *     calling application) and, more importantly, as GPU components in larger
 *     CPU/GPU applications.
 *   - CUDPP is implemented as 4 layers:
 *     -# The \link publicInterface Public Interface\endlink is the external
 *        library interface, which is the intended entry point for most
 *        applications. The public interface calls into the
 *        \link cudpp_app Application-Level API\endlink.
 *     -# The \link cudpp_app Application-Level API\endlink comprises functions
 *        callable from CPU code. These functions execute code jointly on the
 *        CPU (host) and the GPU by calling into the
 *        \link cudpp_kernel Kernel-Level API\endlink below them.
 *     -# The \link cudpp_kernel Kernel-Level API\endlink comprises functions
 *        that run entirely on the GPU across an entire grid of thread blocks.
 *        These functions may call into the \link cudpp_cta CTA-Level API\endlink
 *        below them.
 *     -# The \link cudpp_cta CTA-Level API\endlink comprises functions that run
 *        entirely on the GPU within a single Cooperative Thread Array (CTA,
 *        aka thread block). These are low-level functions that implement core
 *        data-parallel algorithms, typically by processing data within shared
 *        (CUDA \c __shared__) memory.
 *
 * Programmers may use any of the lower three CUDPP layers in their own
 * programs by building the source directly into their application.  However,
 * the typical usage of CUDPP is to link to the library and invoke functions in
 * the CUDPP \link publicInterface Public Interface\endlink, as in the
 * \ref example_simpleCUDPP "simpleCUDPP", satGL, and cudpp_testrig application
 * examples included in the CUDPP distribution.
 *
 * In the future, if and when CUDA supports building device-level libraries, we
 * hope to enhance CUDPP to ease the use of CUDPP internal algorithms at all
 * levels.
 *
 * \subsection uses Use Cases
 * We expect the normal use of CUDPP will be in one of two ways:
 * -# Linking the CUDPP library against another application.
 * -# Running our "test" application, cudpp_testrig, that exercises
 *   CUDPP functionality.
 *
 * \section references References
 * The following publications describe work incorporated in CUDPP.
 *
 * - Mark Harris, Shubhabrata Sengupta, and John D. Owens. "Parallel Prefix Sum (Scan) with CUDA". In Hubert Nguyen, editor, <i>GPU Gems 3</i>, chapter 39, pages 851&ndash;876. Addison Wesley, August 2007. http://graphics.idav.ucdavis.edu/publications/print_pub?pub_id=916
 * - Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. "Scan Primitives for GPU Computing". In <i>Graphics Hardware 2007</i>, pages 97&ndash;106, August 2007. http://graphics.idav.ucdavis.edu/publications/print_pub?pub_id=915
 * - Shubhabrata Sengupta, Mark Harris, and Michael Garland. "Efficient parallel scan algorithms for GPUs". NVIDIA Technical Report NVR-2008-003, December 2008. http://mgarland.org/papers.html#segscan-tr
 * - Nadathur Satish, Mark Harris, and Michael Garland. "Designing Efficient Sorting Algorithms for Manycore GPUs". In <i>Proceedings of the 23rd IEEE International Parallel & Distributed Processing Symposium</i>, May 2009. http://mgarland.org/papers.html#gpusort
 * - Stanley Tzeng, Li-Yi Wei. "Parallel White Noise Generation on a GPU via Cryptographic Hash". In <i>Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games</i>, pages 79&ndash;87, February 2008. http://research.microsoft.com/apps/pubs/default.aspx?id=70502
 *
 * Many researchers are using CUDPP in their work, and there are many publications
 * that have used it \ref cudpp_refs "(references)". If your work uses CUDPP, please
 * let us know by sending us a reference (preferably in BibTeX format) to your work.
 *
 * \section citing Citing CUDPP
 *
 * If you make use of CUDPP primitives in your work and want to cite
 * CUDPP (thanks!), we would prefer for you to cite the appropriate
 * papers above, since they form the core of CUDPP. To be more specific,
 * the GPU Gems paper describes (unsegmented) scan, multi-scan for
 * summed-area tables, and stream compaction. The NVIDIA technical report
 * describes the current scan and segmented scan algorithms used in the
 * library, and the Graphics Hardware paper describes an earlier
 * implementation of segmented scan, quicksort, and sparse matrix-vector
 * multiply. The IPDPS paper describes the radix sort used in CUDPP, and
 * the I3D paper describes the random number generation algorithm.
 *
 * \section credits Credits
 * \subsection developers CUDPP Developers
 * - <a href="http://www.markmark.net">Mark Harris</a>, NVIDIA Corporation
 * - <a href="http://www.ece.ucdavis.edu/~jowens/">John D. Owens</a>, University of California, Davis
 * - <a href="http://graphics.cs.ucdavis.edu/~shubho/">Shubho Sengupta</a>, University of California, Davis
 * - Stanley Tzeng,   University of California, Davis
 * - <a href="http://www.ece.ucdavis.edu/~yaozhang/">Yao Zhang</a>,       University of California, Davis
 * - <a href="http://www.ece.ucdavis.edu/~aaldavid/">Andrew Davidson</a>, University of California, Davis (formerly Louisiana State University)
 *
 * \subsection contributors Other CUDPP Contributors
 * - <a href="http://www.eecs.berkeley.edu/~nrsatish/">Nadatur Satish</a>,  University of California, Berkeley
 *
 * \subsection acknowledgments Acknowledgments
 *
 * Thanks to Jim Ahrens, Timo Aila, Nathan Bell, Ian Buck, Guy Blelloch,
 * Jeff Bolz, Michael Garland, Jeff Inman, Eric Lengyel, Samuli Laine,
 * David Luebke, Pat McCormick, and Richard Vuduc for their contributions
 * during the development of this library.
 *
 * CUDPP Developers from UC Davis thank their funding agencies:
 * - Department of Energy Early Career Principal Investigator Award
 *   DE-FG02-04ER25609
 * - SciDAC Institute for Ultrascale Visualization (http://www.iusv.org/)
 * - Los Alamos National Laboratory
 * - National Science Foundation (grant 0541448)
 * - Generous hardware donations from NVIDIA
 *
 * \section license-overview CUDPP Copyright and Software License
 * CUDPP is copyright The Regents of the University of California, Davis campus
 * and NVIDIA Corporation.  The library, examples, and all source code are
 * released under the BSD license, designed to encourage reuse of this software
 * in other projects, both commercial and non-commercial.  For details, please
 * see the \ref license page.
 *
 * Note that prior to release 1.1 of CUDPP, the license used was a modified
 * BSD license.  With release 1.1, this license was replaced with the pure BSD
 * license to facilitate the use of open source hosting of the code.
 */

/**
 * @page license CUDPP License
 *
 * \section licenseBSD CUDPP License
 *
 * CUDPP is released under the
 * <a href="http://www.opensource.org/licenses/bsd-license.php">BSD license</a>.
 *
 * @include license.txt
 *
 */

/**
 * @page changelog CUDPP Change Log
 *
 * @include changelog.txt
 */

/**
 * @page cudpp_refs Publications that use CUDPP
 *
 * @htmlinclude doc/bib/cudpp_refs.html
 */

/**
 * @page cudpp_refs_bib Bibliography for publications that use CUDPP
 *
 * @htmlinclude doc/bib/cudpp_refs_bib.html
 */

/**
 * @page building-cudpp Building CUDPP
 *
 * CUDPP has currently been tested in Windows XP, Windows Vista, Mac OS X
 * and Linux.  See \ref release-notes for release specific platform support.
 *
 * \section build-win32 Building CUDPP on Windows XP
 *
 * CUDPP can be built using either or MSVC 8 (2005) or MSVC 9 (2008).  To
 * build, open cudpp/cudpp.sln. Then you can build the library
 * using the "build" command as you would with any other workspace. There are
 * four configurations: debug, release, emudebug, and emurelease.  The first
 * two are self-explanatory.  The second two are built to use CUDA device
 * emulation, meaning they will be run (slowly) on the CPU.
 *
 * \section build-linux Building CUDPP on Linux and Mac OS X
 *
 * CUDPP can be built using standard g++ and Make tools on Linux, by typing
 * "make" in the "cudpp/" subdirectory.  Before building CUDPP, you should
 * first build the CUDA Utility Library (libcutil) by typing "make; make dbg=1"
 * in the "common/" subdirectory.  This will generate libcutil.a and
 * libcutilD.a.
 *
 * The makefile for CUDPP and all sample applications take the optional
 * arguments "emu=1" and "dbg=1".  The former builds CUDPP for device emulation,
 * and the latter for debugging. The two flags can be combined. "verbose=1"
 * can be used to see all compiler output.
 *
 * \section build-apps Building CUDPP Sample Applications
 *
 * The sample applications in the "apps/" subdirectory can be built exactly
 * like CUDPP is--either by opening the appropriate .sln/.vcproj file in MSVC
 * in Windows, or using "make" in Linux.
 *
 * On some Linux installations you will get linker errors relating to "-lXi"
 * and "-lXmu".  To fix this, you will need to install libXi and libXmu.  On
 * Debian and Ubuntu, for example, you can simply run
 *  "sudo apt-get install libxi-dev", and
 *  "sudo apt-get install libxmu-dev"
 *
 */

#ifndef __CUDPP_H__
#define __CUDPP_H__

#include <cstdlib> // for size_t

#ifdef __cplusplus
extern "C" {
#endif

/**
 * @brief CUDPP Result codes returned by CUDPP API functions.
 */
enum CUDPPResult
{
    CUDPP_SUCCESS = 0,                 /**< No error. */
    CUDPP_ERROR_INVALID_HANDLE,        /**< Specified handle (for example,
                                            to a plan) is invalid. **/
    CUDPP_ERROR_ILLEGAL_CONFIGURATION, /**< Specified configuration is
                                            illegal. For example, an
                                            invalid or illogical
                                            combination of options. */
    CUDPP_ERROR_UNKNOWN = 9999         /**< Unknown or untraceable error. */
};

/**
 * @brief Options for configuring CUDPP algorithms.
 *
 * @see CUDPPConfiguration, cudppPlan, CUDPPAlgorithm
 */
enum CUDPPOption
{
    CUDPP_OPTION_FORWARD   = 0x1,  /**< Algorithms operate forward:
                                    * from start to end of input
                                    * array */
    CUDPP_OPTION_BACKWARD  = 0x2,  /**< Algorithms operate backward:
                                    * from end to start of array */
    CUDPP_OPTION_EXCLUSIVE = 0x4,  /**< Exclusive (for scans) - scan
                                    * includes all elements up to (but
                                    * not including) the current
                                    * element */
    CUDPP_OPTION_INCLUSIVE = 0x8,  /**< Inclusive (for scans) - scan
                                    * includes all elements up to and
                                    * including the current element */
    CUDPP_OPTION_CTA_LOCAL = 0x10, /**< Algorithm performed only on
                                    * the CTAs (blocks) with no
                                    * communication between blocks.
                                    * @todo Currently ignored. */
    CUDPP_OPTION_KEYS_ONLY = 0x20, /**< No associated value to a key
                                    * (for global radix sort) */
    CUDPP_OPTION_KEY_VALUE_PAIRS = 0x40, /**< Each key has an associated value */
};


/**
 * @brief Datatypes supported by CUDPP algorithms.
 *
 * @see CUDPPConfiguration, cudppPlan
 */
enum CUDPPDatatype
{
    CUDPP_CHAR,     //!< Character type (C char)
    CUDPP_UCHAR,    //!< Unsigned character (byte) type (C unsigned char)
    CUDPP_INT,      //!< Integer type (C int)
    CUDPP_UINT,     //!< Unsigned integer type (C unsigned int)
    CUDPP_FLOAT     //!< Float type (C float)
};

/**
 * @brief Operators supported by CUDPP algorithms (currently scan and
 * segmented scan).
 *
 * These are all binary associative operators.
 *
 * @see CUDPPConfiguration, cudppPlan
 */
enum CUDPPOperator
{
    CUDPP_ADD,      //!< Addition of two operands
    CUDPP_MULTIPLY, //!< Multiplication of two operands
    CUDPP_MIN,      //!< Minimum of two operands
    CUDPP_MAX       //!< Maximum of two operands
};

/**
* @brief Algorithms supported by CUDPP.  Used to create appropriate plans using
* cudppPlan.
*
* @see CUDPPConfiguration, cudppPlan
*/
enum CUDPPAlgorithm
{
    CUDPP_SCAN,              //!< Scan or prefix-sum
    CUDPP_SEGMENTED_SCAN,    //!< Segmented scan
    CUDPP_COMPACT,           //!< Stream compact
    CUDPP_REDUCE,            //!< Parallel reduction (NOTE: currently unimplemented)
    CUDPP_SORT_RADIX,        //!< Radix sort
    CUDPP_SPMVMULT,          //!< Sparse matrix-dense vector multiplication
    CUDPP_RAND_MD5,          //!< PseudoRandom Number Generator using MD5 hash algorithm
    CUDPP_ALGORITHM_INVALID, //!< Placeholder at end of enum
};

/**
* @brief Configuration struct used to specify algorithm, datatype,
* operator, and options when creating a plan for CUDPP algorithms.
*
* @see cudppPlan
*/
struct CUDPPConfiguration
{
    CUDPPAlgorithm algorithm; //!< The algorithm to be used
    CUDPPOperator  op;        //!< The numerical operator to be applied
    CUDPPDatatype  datatype;  //!< The datatype of the input arrays
    unsigned int   options;   //!< Options to configure the algorithm
};

#define CUDPP_INVALID_HANDLE 0xC0DABAD1
typedef size_t CUDPPHandle;

/* To use CUDPP as a static library, #define CUDPP_STATIC_LIB before
 * including cudpp.h
 */
#define CUDPP_STATIC_LIB
#ifndef CUDPP_DLL
    #ifdef _WIN32
        #ifdef CUDPP_STATIC_LIB
            #define CUDPP_DLL
        #else
        #ifdef BUILD_DLL
            #define CUDPP_DLL __declspec(dllexport)
        #else
            #define CUDPP_DLL __declspec(dllimport)
        #endif
        #endif
    #else
        #define CUDPP_DLL
    #endif
#endif

// Plan allocation (for scan, sort, and compact)

CUDPP_DLL
CUDPPResult cudppPlan(CUDPPHandle        *planHandle,
                      CUDPPConfiguration config,
                      size_t             n,
                      size_t             rows,
                      size_t             rowPitch);

CUDPP_DLL
CUDPPResult cudppDestroyPlan(CUDPPHandle plan);

// Scan and sort algorithms

CUDPP_DLL
CUDPPResult cudppScan(CUDPPHandle planHandle,
                      void        *d_out,
                      const void  *d_in,
                      size_t      numElements);

CUDPP_DLL
CUDPPResult cudppMultiScan(CUDPPHandle planHandle,
                           void        *d_out,
                           const void  *d_in,
                           size_t      numElements,
                           size_t      numRows);

CUDPP_DLL
CUDPPResult cudppSegmentedScan(CUDPPHandle        planHandle,
                               void               *d_out,
                               const void         *d_idata,
                               const unsigned int *d_iflags,
                               size_t             numElements);

CUDPP_DLL
CUDPPResult cudppCompact(CUDPPHandle        planHandle,
                         void               *d_out,
                         size_t             *d_numValidElements,
                         const void         *d_in,
                         const unsigned int *d_isValid,
                         size_t             numElements);

CUDPP_DLL
CUDPPResult cudppSort(CUDPPHandle planHandle,
                      void        *d_keys,
                      void        *d_values,
                      int         keybits,
                      size_t      numElements);

// Sparse matrix allocation

CUDPP_DLL
CUDPPResult cudppSparseMatrix(CUDPPHandle        *sparseMatrixHandle,
                              CUDPPConfiguration config,
                              size_t             n,
                              size_t             rows,
                              const void         *A,
                              const unsigned int *h_rowIndices,
                              const unsigned int *h_indices);

CUDPP_DLL
CUDPPResult cudppDestroySparseMatrix(CUDPPHandle sparseMatrixHandle);

// Sparse matrix-vector algorithms

CUDPP_DLL
CUDPPResult cudppSparseMatrixVectorMultiply(CUDPPHandle sparseMatrixHandle,
                                            void        *d_y,
                                            const void  *d_x);

// random number generation algorithms
CUDPP_DLL
CUDPPResult cudppRand(CUDPPHandle planHandle,void * d_out, size_t numElements);

CUDPP_DLL
CUDPPResult cudppRandSeed(const CUDPPHandle planHandle, unsigned int seed);

#ifdef __cplusplus
}
#endif

#endif

// Leave this at the end of the file
// Local Variables:
// mode:c++
// c-file-style: "NVIDIA"
// End: