1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
// -------------------------------------------------------------
// CUDPP -- CUDA Data Parallel Primitives library
// -------------------------------------------------------------
// $Revision: 5632 $
// $Date: 2009-07-01 14:36:01 +1000 (Wed, 01 Jul 2009) $
// -------------------------------------------------------------
// This source code is distributed under the terms of license.txt in
// the root directory of this source distribution.
// -------------------------------------------------------------
/**
* @file
* vector_kernel.cu
*
* @brief CUDA kernel methods for basic operations on vectors.
*
* CUDA kernel methods for basic operations on vectors.
*
* Examples:
* - vectorAddConstant(): d_vector + constant
* - vectorAddUniform(): d_vector + uniform (per-block constants)
* - vectorAddVectorVector(): d_vector + d_vector
*/
// MJH: these functions assume there are 2N elements for N threads.
// Is this always going to be a good idea? There may be cases where
// we have as many threads as elements, but for large problems
// we are probably limited by max CTA size for simple kernels like
// this so we should process multiple elements per thread.
// we may want to extend these with looping versions that process
// many elements per thread.
#include "cudpp_util.h"
#include "sharedmem.h"
#include "cudpp.h"
/** \addtogroup cudpp_kernel
* @{
*/
/** @name Vector Functions
* CUDA kernel methods for basic operations on vectors.
* @{
*/
/** @brief Adds a constant value to all values in the input d_vector
*
* Each thread adds two pairs of elements.
* @todo Test this function -- it is currently not yet used.
*
* @param[in,out] d_vector The array of elements to be modified
* @param[in] constant The constant value to be added to elements of
* \a d_vector
* @param[in] n The number of elements in the d_vector to be modified
* @param[in] baseIndex An optional offset to the beginning of the
* elements in the input array to be processed
*/
template <class T>
__global__ void vectorAddConstant(T *d_vector,
T constant,
int n,
int baseIndex)
{
// Compute this thread's output address
unsigned int address = baseIndex + threadIdx.x +
__mul24(blockIdx.x, (blockDim.x << 1));
// note two adds per thread: one in first half of the block, one in last
d_vector[address] += constant;
d_vector[address + blockDim.x] += (threadIdx.x + blockDim.x < n) * constant;
}
/** @brief Add a uniform value to each data element of an array
*
* This function reads one value per CTA from \a d_uniforms into shared
* memory and adds that value to all values "owned" by the CTA in \a
* d_vector. Each thread adds two pairs of values.
*
* @param[out] d_vector The d_vector whose values will have the uniform added
* @param[in] d_uniforms The array of uniform values (one per CTA)
* @param[in] numElements The number of elements in \a d_vector to process
* @param[in] blockOffset an optional offset to the beginning of this block's
* data.
* @param[in] baseIndex an optional offset to the beginning of the array
* within \a d_vector.
*/
template <class T>
__global__ void vectorAddUniform(T *d_vector,
const T *d_uniforms,
int numElements,
int blockOffset,
int baseIndex)
{
__shared__ T uni;
// Get this block's uniform value from the uniform array in device memory
// We store it in shared memory so that the hardware's shared memory
// broadcast capability can be used to share among all threads in each warp
// in a single cycle
if (threadIdx.x == 0)
{
uni = d_uniforms[blockIdx.x + __mul24(gridDim.x, blockIdx.y) + blockOffset];
}
// Compute this thread's output address
int width = __mul24(gridDim.x,(blockDim.x << 1));
unsigned int address = baseIndex + __mul24(width, blockIdx.y)
+ threadIdx.x + __mul24(blockIdx.x, (blockDim.x << 1));
__syncthreads();
// note two adds per thread: one in first half of the block, one in last
d_vector[address] += uni;
if (threadIdx.x + blockDim.x < numElements) d_vector[address + blockDim.x] += uni;
}
/** @brief Add a uniform value to each data element of an array (vec4 version)
*
* This function reads one value per CTA from \a d_uniforms into shared
* memory and adds that value to all values "owned" by the CTA in \a d_vector.
* Each thread adds the uniform value to eight values in \a d_vector.
*
* @param[out] d_vector The d_vector whose values will have the uniform added
* @param[in] d_uniforms The array of uniform values (one per CTA)
* @param[in] numElements The number of elements in \a d_vector to process
* @param[in] vectorRowPitch For 2D arrays, the pitch (in elements) of the
* rows of \a d_vector.
* @param[in] uniformRowPitch For 2D arrays, the pitch (in elements) of the
* rows of \a d_uniforms.
* @param[in] blockOffset an optional offset to the beginning of this block's
* data.
* @param[in] baseIndex an optional offset to the beginning of the array
* within \a d_vector.
*/
template <class T, CUDPPOperator op, int elementsPerThread>
__global__ void vectorAddUniform4(T *d_vector,
const T *d_uniforms,
int numElements,
int vectorRowPitch, // width of input array in elements
int uniformRowPitch, // width of uniform array in elements
int blockOffset,
int baseIndex)
{
__shared__ T uni;
// Get this block's uniform value from the uniform array in device memory
// We store it in shared memory so that the hardware's shared memory
// broadcast capability can be used to share among all threads in each warp
// in a single cycle
if (threadIdx.x == 0)
{
uni = d_uniforms[blockIdx.x + __umul24(uniformRowPitch, blockIdx.y) + blockOffset];
}
// Compute this thread's output address
//int width = __mul24(gridDim.x,(blockDim.x << 1));
unsigned int address = baseIndex + __umul24(vectorRowPitch, blockIdx.y)
+ threadIdx.x + __umul24(blockIdx.x, (blockDim.x * elementsPerThread));
numElements += __umul24(vectorRowPitch, blockIdx.y);
__syncthreads();
switch (op)
{
case CUDPP_ADD:
for (int i = 0; i < elementsPerThread && address < numElements; i++)
{
d_vector[address] += uni;
address += blockDim.x;
}
break;
case CUDPP_MULTIPLY:
for (int i = 0; i < elementsPerThread && address < numElements; i++)
{
d_vector[address] *= uni;
address += blockDim.x;
}
break;
case CUDPP_MAX:
for (int i = 0; i < elementsPerThread && address < numElements; i++)
{
d_vector[address] = max(d_vector[address], uni);
address += blockDim.x;
}
break;
case CUDPP_MIN:
for (int i = 0; i < elementsPerThread && address < numElements; i++)
{
d_vector[address] = min(d_vector[address], uni);
address += blockDim.x;
}
break;
default:
break;
}
}
/** @brief Adds together two vectors
*
* Each thread adds two pairs of elements.
* @todo Test this function -- it is currently not yet used.
*
* @param[out] d_vectorA The left operand array and the result
* @param[in] d_vectorB The right operand array
* @param[in] numElements The number of elements in the vectors to be added.
* @param[in] baseIndex An optional offset to the beginning of the
* elements in the input arrays to be processed
*/
template <class T>
__global__ void vectorAddVector(T *d_vectorA, // A += B
const T *d_vectorB,
int numElements,
int baseIndex)
{
// Compute this thread's output address
unsigned int address = baseIndex + threadIdx.x +
__mul24(blockIdx.x, (blockDim.x << 1));
// note two adds per thread: one in first half of the block, one in last
d_vectorA[address] += d_vectorB[address];
d_vectorA[address + blockDim.x] +=
(threadIdx.x + blockDim.x < numElements) * d_vectorB[address];
}
/** @brief Add a uniform value to data elements of an array (vec4 version)
*
* This function reads one value per CTA from \a d_uniforms into shared
* memory and adds that value to values "owned" by the CTA in \a d_vector.
* The uniform value is added to only those values "owned" by the CTA which
* have an index less than d_maxIndex. If d_maxIndex for that CTA is UINT_MAX
* it adds the uniform to all values "owned" by the CTA.
* Each thread adds the uniform value to eight values in \a d_vector.
*
* @param[out] d_vector The d_vector whose values will have the uniform added
* @param[in] d_uniforms The array of uniform values (one per CTA)
* @param[in] d_maxIndices The array of maximum indices (one per CTA). This is
* index upto which the uniform would be added. If this is UINT_MAX
* the uniform is added to all elements of the CTA. This index is
* 1-based.
* @param[in] numElements The number of elements in \a d_vector to process
* @param[in] blockOffset an optional offset to the beginning of this block's
* data.
* @param[in] baseIndex an optional offset to the beginning of the array
* within \a d_vector.
*/
template <class T, CUDPPOperator oper, bool isLastBlockFull>
__global__ void vectorSegmentedAddUniform4(T *d_vector,
const T *d_uniforms,
const unsigned int *d_maxIndices,
unsigned int numElements,
int blockOffset,
int baseIndex)
{
__shared__ T uni[2];
unsigned int blockAddress =
blockIdx.x + __mul24(gridDim.x, blockIdx.y) + blockOffset;
// Get this block's uniform value from the uniform array in device memory
// We store it in shared memory so that the hardware's shared memory
// broadcast capability can be used to share among all threads in each warp
// in a single cycle
if (threadIdx.x == 0)
{
if (blockAddress > 0)
uni[0] = d_uniforms[blockAddress-1];
else
uni[0] = Operator<T, oper>::identity();
// Tacit assumption that T is four-byte wide
uni[1] = (T)(d_maxIndices[blockAddress]);
}
// Compute this thread's output address
int width = __mul24(gridDim.x,(blockDim.x << 1));
unsigned int address = baseIndex + __mul24(width, blockIdx.y)
+ threadIdx.x + __mul24(blockIdx.x, (blockDim.x << 3));
__syncthreads();
unsigned int maxIndex = (unsigned int)(uni[1]);
bool isLastBlock = (blockIdx.x == (gridDim.x-1));
if (maxIndex < UINT_MAX)
{
// Since maxIndex is a 1 based index
--maxIndex;
bool leftLess = address < maxIndex;
bool rightLess = (address + 7 * blockDim.x) < maxIndex;
if (leftLess)
{
if (rightLess)
{
for (unsigned int i = 0; i < 8; ++i)
d_vector[address + i * blockDim.x] =
Operator<T, oper>::op(d_vector[address + i * blockDim.x], uni[0]);
}
else
{
for (unsigned int i=0; i < 8; ++i)
{
if (address < maxIndex)
d_vector[address] =
Operator<T, oper>::op(d_vector[address], uni[0]);
address += blockDim.x;
}
}
}
}
else
{
if (!isLastBlockFull && isLastBlock)
{
for (unsigned int i = 0; i < 8; ++i)
{
if (address < numElements)
d_vector[address] =
Operator<T, oper>::op(d_vector[address], uni[0]);
address += blockDim.x;
}
}
else
{
for (unsigned int i=0; i<8; ++i)
{
d_vector[address] =
Operator<T, oper>::op(d_vector[address], uni[0]);
address += blockDim.x;
}
}
}
}
/** @brief Add a uniform value to data elements of an array (vec4 version)
*
* This function reads one value per CTA from \a d_uniforms into shared
* memory and adds that value to values "owned" by the CTA in \a d_vector.
* The uniform value is added to only those values "owned" by the CTA which
* have an index greater than d_minIndex. If d_minIndex for that CTA is 0
* it adds the uniform to all values "owned" by the CTA.
* Each thread adds the uniform value to eight values in \a d_vector.
*
* @param[out] d_vector The d_vector whose values will have the uniform added
* @param[in] d_uniforms The array of uniform values (one per CTA)
* @param[in] d_minIndices The array of minimum indices (one per CTA). The
* uniform is added to the right of this index (that is, to every index
* that is greater than this index). If this is 0, the uniform is
* added to all elements of the CTA. This index is 1-based to
* prevent overloading of what 0 means. In our case it means
* absence of a flag. But if the first element of a CTA has
* flag the index will also be 0. Hence we use 1-based indices
* so the index is 1 in the latter case.
* @param[in] numElements The number of elements in \a d_vector to process
* @param[in] blockOffset an optional offset to the beginning of this block's
* data.
* @param[in] baseIndex an optional offset to the beginning of the array
* within \a d_vector.
*
*/
template <class T, CUDPPOperator oper, bool isLastBlockFull>
__global__ void vectorSegmentedAddUniformToRight4(T *d_vector,
const T *d_uniforms,
const unsigned int *d_minIndices,
unsigned int numElements,
int blockOffset,
int baseIndex)
{
__shared__ T uni[2];
unsigned int blockAddress =
blockIdx.x + __mul24(gridDim.x, blockIdx.y) + blockOffset;
// Get this block's uniform value from the uniform array in device memory
// We store it in shared memory so that the hardware's shared memory
// broadcast capability can be used to share among all threads in each warp
// in a single cycle
if (threadIdx.x == 0)
{
// FIXME - blockAddress test here is incompatible with how it is calculated
// above
if (blockAddress < (gridDim.x-1))
uni[0] = d_uniforms[blockAddress+1];
else
uni[0] = Operator<T, oper>::identity();
// Tacit assumption that T is four-byte wide
uni[1] = (T)(d_minIndices[blockAddress]);
}
// Compute this thread's output address
int width = __mul24(gridDim.x,(blockDim.x << 1));
unsigned int address = baseIndex + __mul24(width, blockIdx.y)
+ threadIdx.x + __mul24(blockIdx.x, (blockDim.x << 3));
__syncthreads();
unsigned int minIndex = (unsigned int)(uni[1]);
bool isLastBlock = (blockIdx.x == (gridDim.x-1));
if (minIndex > 0)
{
// Since minIndex is a 1 based index
--minIndex;
bool leftInRange = address > minIndex;
bool rightInRange = (address + 7 * blockDim.x) > minIndex;
if (rightInRange)
{
if (leftInRange)
{
for (unsigned int i = 0; i < 8; ++i)
d_vector[address + i * blockDim.x] =
Operator<T, oper>::op(d_vector[address + i * blockDim.x], uni[0]);
}
else
{
for (unsigned int i=0; i < 8; ++i)
{
if (address > minIndex)
d_vector[address] =
Operator<T, oper>::op(d_vector[address], uni[0]);
address += blockDim.x;
}
}
}
}
else
{
if (!isLastBlockFull && isLastBlock)
{
for (unsigned int i = 0; i < 8; ++i)
{
if (address < numElements)
d_vector[address] =
Operator<T, oper>::op(d_vector[address], uni[0]);
address += blockDim.x;
}
}
else
{
for (unsigned int i=0; i<8; ++i)
{
d_vector[address] =
Operator<T, oper>::op(d_vector[address], uni[0]);
address += blockDim.x;
}
}
}
}
/** @} */ // end d_vector functions
/** @} */ // end cudpp_kernel
|