File: nvd_device.h

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (522 lines) | stat: -rw-r--r-- 20,646 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/***************************************************************************
                                nvd_device.h
                             -------------------
                               W. Michael Brown

  Utilities for dealing with cuda devices

 __________________________________________________________________________
    This file is part of the Geryon Unified Coprocessor Library (UCL)
 __________________________________________________________________________

    begin                : Thu Jan 21 2010
    copyright            : (C) 2010 by W. Michael Brown
    email                : brownw@ornl.gov
 ***************************************************************************/

/* -----------------------------------------------------------------------
   Copyright (2009) Sandia Corporation.  Under the terms of Contract
   DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
   certain rights in this software.  This software is distributed under
   the Simplified BSD License.
   ----------------------------------------------------------------------- */

#ifndef NVD_DEVICE
#define NVD_DEVICE

#include <string>
#include <vector>
#include <iostream>
#include "nvd_macros.h"
#include "ucl_types.h"

namespace ucl_cudadr {

// --------------------------------------------------------------------------
// - COMMAND QUEUE STUFF
// --------------------------------------------------------------------------
typedef CUstream command_queue;

inline void ucl_flush(command_queue &cq) {}

inline void ucl_sync(CUstream &stream) {
  CU_SAFE_CALL(cuStreamSynchronize(stream));
}

struct NVDProperties {
  int device_id;
  std::string name;
  int major;
  int minor;
  CUDA_INT_TYPE totalGlobalMem;
  int multiProcessorCount;

  int maxThreadsPerBlock;
  int maxThreadsDim[3];
  int maxGridSize[3];
  int sharedMemPerBlock;
  int totalConstantMemory;
  int SIMDWidth;
  int memPitch;
  int regsPerBlock;
  int clockRate;
  int textureAlign;

  int kernelExecTimeoutEnabled;
  int integrated;
  int canMapHostMemory;
  int concurrentKernels;
  int ECCEnabled;
  int computeMode;
};

/// Class for looking at device properties
/** \note Calls to change the device outside of the class results in incorrect
  *       behavior
  * \note There is no error checking for indexing past the number of devices **/
class UCL_Device {
 public:
  /// Collect properties for every GPU on the node
  /** \note You must set the active GPU with set() before using the device **/
  inline UCL_Device();

  inline ~UCL_Device();

  /// Returns 1 (For compatibility with OpenCL)
  inline int num_platforms() { return 1; }

  /// Return a string with name and info of the current platform
  inline std::string platform_name()
    { return "NVIDIA Corporation NVIDIA CUDA Driver"; }

  /// Delete any contexts/data and set the platform number to be used
  inline int set_platform(const int pid);

  /// Return the number of devices that support CUDA
  inline int num_devices() { return _properties.size(); }

  /// Set the CUDA device to the specified device number
  /** A context and default command queue will be created for the device
    * Returns UCL_SUCCESS if successful or UCL_ERROR if the device could not
    * be allocated for use. clear() is called to delete any contexts and
    * associated data from previous calls to set(). **/
  inline int set(int num);

  /// Delete any context and associated data stored from a call to set()
  inline void clear();

  /// Get the current device number
  inline int device_num() { return _device; }

  /// Returns the default stream for the current device
  inline command_queue & cq() { return cq(0); }

  /// Returns the stream indexed by i
  inline command_queue & cq(const int i) { return _cq[i]; }

  /// Block until all commands in the default stream have completed
  inline void sync() { sync(0); }

  /// Block until all commands in the specified stream have completed
  inline void sync(const int i) { ucl_sync(cq(i)); }

  /// Get the number of command queues currently available on device
  inline int num_queues()
    { return _cq.size(); }

  /// Add a stream for device computations
  inline void push_command_queue() {
    _cq.push_back(CUstream());
    CU_SAFE_CALL(cuStreamCreate(&_cq.back(),0));
  }

  /// Remove a stream for device computations
  /** \note You cannot delete the default stream **/
  inline void pop_command_queue() {
    if (_cq.size()<2) return;
    CU_SAFE_CALL_NS(cuStreamDestroy(_cq.back()));
    _cq.pop_back();
  }

  /// Set the default command queue (by default this is the null stream)
  /** \param i index of the command queue (as added by push_command_queue())
      If i is 0, the default command queue is set to the null stream **/
  inline void set_command_queue(const int i) {
    if (i==0) _cq[0]=0;
    else _cq[0]=_cq[i];
  }

  /// Get the current CUDA device name
  inline std::string name() { return name(_device); }
  /// Get the CUDA device name
  inline std::string name(const int i)
    { return std::string(_properties[i].name); }

  /// Get a string telling the type of the current device
  inline std::string device_type_name() { return device_type_name(_device); }
  /// Get a string telling the type of the device
  inline std::string device_type_name(const int i) { return "GPU"; }

  /// Get current device type (UCL_CPU, UCL_GPU, UCL_ACCELERATOR, UCL_DEFAULT)
  inline enum UCL_DEVICE_TYPE device_type() { return device_type(_device); }
  /// Get device type (UCL_CPU, UCL_GPU, UCL_ACCELERATOR, UCL_DEFAULT)
  inline enum UCL_DEVICE_TYPE device_type(const int i) { return UCL_GPU; }

  /// Returns true if host memory is efficiently addressable from device
  inline bool shared_memory() { return shared_memory(_device); }
  /// Returns true if host memory is efficiently addressable from device
  inline bool shared_memory(const int i) { return device_type(i)==UCL_CPU; }

  /// Returns preferred vector width
  inline int preferred_fp32_width() { return preferred_fp32_width(_device); }
  /// Returns preferred vector width
  inline int preferred_fp32_width(const int i)
    {return _properties[i].SIMDWidth;}
  /// Returns preferred vector width
  inline int preferred_fp64_width() { return preferred_fp64_width(_device); }
  /// Returns preferred vector width
  inline int preferred_fp64_width(const int i)
    {return _properties[i].SIMDWidth;}

  /// Returns true if double precision is support for the current device
  inline bool double_precision() { return double_precision(_device); }
  /// Returns true if double precision is support for the device
  inline bool double_precision(const int i) {return arch(i)>=1.3;}

  /// Get the number of compute units on the current device
  inline unsigned cus() { return cus(_device); }
  /// Get the number of compute units
  inline unsigned cus(const int i)
    { return _properties[i].multiProcessorCount; }

  /// Get the number of cores in the current device
  inline unsigned cores() { return cores(_device); }
  /// Get the number of cores
  inline unsigned cores(const int i)
    { if (arch(i)<2.0) return _properties[i].multiProcessorCount*8;
      else if (arch(i)<2.1) return _properties[i].multiProcessorCount*32;
      else if (arch(i)<3.0) return _properties[i].multiProcessorCount*48;
      else return _properties[i].multiProcessorCount*192; }

  /// Get the gigabytes of global memory in the current device
  inline double gigabytes() { return gigabytes(_device); }
  /// Get the gigabytes of global memory
  inline double gigabytes(const int i)
    { return static_cast<double>(_properties[i].totalGlobalMem)/1073741824; }

  /// Get the bytes of global memory in the current device
  inline size_t bytes() { return bytes(_device); }
  /// Get the bytes of global memory
  inline size_t bytes(const int i) { return _properties[i].totalGlobalMem; }

  // Get the gigabytes of free memory in the current device
  inline double free_gigabytes() { return free_gigabytes(_device); }
  // Get the gigabytes of free memory
  inline double free_gigabytes(const int i)
    { return static_cast<double>(free_bytes(i))/1073741824; }

  // Get the bytes of free memory in the current device
  inline size_t free_bytes() { return free_bytes(_device); }
  // Get the bytes of free memory
  inline size_t free_bytes(const int i) {
    CUDA_INT_TYPE dfree, dtotal;
    CU_SAFE_CALL_NS(cuMemGetInfo(&dfree, &dtotal));
    return static_cast<size_t>(dfree);
  }

  /// Return the GPGPU compute capability for current device
  inline double arch() { return arch(_device); }
  /// Return the GPGPU compute capability
  inline double arch(const int i)
    { return static_cast<double>(_properties[i].minor)/10+_properties[i].major;}

  /// Clock rate in GHz for current device
  inline double clock_rate() { return clock_rate(_device); }
  /// Clock rate in GHz
  inline double clock_rate(const int i)
    { return _properties[i].clockRate*1e-6;}

  /// Get the maximum number of threads per block
  inline size_t group_size() { return group_size(_device); }
  /// Get the maximum number of threads per block
  inline size_t group_size(const int i)
    { return _properties[i].maxThreadsPerBlock; }
  /// Get the maximum number of threads per block in dimension 'dim'
  inline size_t group_size_dim(const int dim)
    { return group_size_dim(_device, dim); }
  /// Get the maximum number of threads per block in dimension 'dim'
  inline size_t group_size_dim(const int i, const int dim)
    { return _properties[i].maxThreadsDim[dim]; }

  /// Get the shared local memory size in bytes
  inline size_t slm_size() { return slm_size(_device); }
  /// Get the shared local memory size in bytes
  inline size_t slm_size(const int i)
    { return _properties[i].sharedMemPerBlock; }

  /// Return the maximum memory pitch in bytes for current device
  inline size_t max_pitch() { return max_pitch(_device); }
  /// Return the maximum memory pitch in bytes
  inline size_t max_pitch(const int i) { return _properties[i].memPitch; }

  /// Returns false if accelerator cannot be shared by multiple processes
  /** If it cannot be determined, true is returned **/
  inline bool sharing_supported() { return sharing_supported(_device); }
  /// Returns false if accelerator cannot be shared by multiple processes
  /** If it cannot be determined, true is returned **/
  inline bool sharing_supported(const int i)
    { return (_properties[i].computeMode == CU_COMPUTEMODE_DEFAULT); }

  /// True if splitting device into equal subdevices supported
  inline bool fission_equal()
    { return fission_equal(_device); }
  /// True if splitting device into equal subdevices supported
  inline bool fission_equal(const int i)
    { return false; }
  /// True if splitting device into subdevices by specified counts supported
  inline bool fission_by_counts()
    { return fission_by_counts(_device); }
  /// True if splitting device into subdevices by specified counts supported
  inline bool fission_by_counts(const int i)
    { return false; }
  /// True if splitting device into subdevices by affinity domains supported
  inline bool fission_by_affinity()
    { return fission_by_affinity(_device); }
  /// True if splitting device into subdevices by affinity domains supported
  inline bool fission_by_affinity(const int i)
    { return false; }

  /// Maximum number of subdevices allowed from device fission
  inline int max_sub_devices()
    { return max_sub_devices(_device); }
  /// Maximum number of subdevices allowed from device fission
  inline int max_sub_devices(const int i)
    { return 0; }

  /// True if the device supports shuffle intrinsics
  inline bool has_shuffle_support()
    { return has_shuffle_support(_device); }
  /// True if the device supports shuffle intrinsics
  inline bool has_shuffle_support(const int i)
    { return arch(i)>=3.0; }

  /// List all devices along with all properties
  inline void print_all(std::ostream &out);

  /// For compatability with OCL API
  inline int auto_set_platform(const enum UCL_DEVICE_TYPE type=UCL_GPU,
			       const std::string vendor="",
			       const int ndevices=-1,
			       const int first_device=-1)
    { return set_platform(0); }

 private:
  int _device, _num_devices;
  std::vector<NVDProperties> _properties;
  std::vector<CUstream> _cq;
  CUdevice _cu_device;
  CUcontext _context;
};

// Grabs the properties for all devices
UCL_Device::UCL_Device() {
  CU_SAFE_CALL_NS(cuInit(0));
  CU_SAFE_CALL_NS(cuDeviceGetCount(&_num_devices));
  for (int i=0; i<_num_devices; ++i) {
    CUdevice dev;
    CU_SAFE_CALL_NS(cuDeviceGet(&dev,i));
    int major, minor;
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, dev));
    if (major==9999)
      continue;

    NVDProperties prop;
    prop.device_id = i;
    prop.major=major;
    prop.minor=minor;

    char namecstr[1024];
    CU_SAFE_CALL_NS(cuDeviceGetName(namecstr,1024,dev));
    prop.name=namecstr;

    CU_SAFE_CALL_NS(cuDeviceTotalMem(&prop.totalGlobalMem,dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.multiProcessorCount, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, dev));

    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxThreadsPerBlock, CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxThreadsDim[0], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxThreadsDim[1], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxThreadsDim[2], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxGridSize[0], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxGridSize[1], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxGridSize[2], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.sharedMemPerBlock, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.totalConstantMemory, CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.SIMDWidth, CU_DEVICE_ATTRIBUTE_WARP_SIZE, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.memPitch, CU_DEVICE_ATTRIBUTE_MAX_PITCH, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.regsPerBlock, CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.clockRate, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.textureAlign, CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT, dev));

    #if CUDA_VERSION >= 2020
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.kernelExecTimeoutEnabled, CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT,dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.integrated, CU_DEVICE_ATTRIBUTE_INTEGRATED, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.canMapHostMemory, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.computeMode, CU_DEVICE_ATTRIBUTE_COMPUTE_MODE,dev));
    #endif
    #if CUDA_VERSION >= 3010
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.concurrentKernels, CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS, dev));
    CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.ECCEnabled, CU_DEVICE_ATTRIBUTE_ECC_ENABLED, dev));
    #endif

    _properties.push_back(prop);
  }
  _device=-1;
  _cq.push_back(CUstream());
  _cq.back()=0;
}

UCL_Device::~UCL_Device() {
  clear();
}

int UCL_Device::set_platform(const int pid) {
  clear();
  #ifdef UCL_DEBUG
  assert(pid<num_platforms());
  #endif
  return UCL_SUCCESS;
}

// Set the CUDA device to the specified device number
int UCL_Device::set(int num) {
  clear();
  _device=_properties[num].device_id;
  CU_SAFE_CALL_NS(cuDeviceGet(&_cu_device,_device));
  CUresult err=cuCtxCreate(&_context,0,_cu_device);
  if (err!=CUDA_SUCCESS) {
    #ifndef UCL_NO_EXIT
    std::cerr << "UCL Error: Could not access accelerator number " << num
              << " for use.\n";
    UCL_GERYON_EXIT;
    #endif
    return UCL_ERROR;
  }
  return UCL_SUCCESS;
}

void UCL_Device::clear() {
  if (_device>-1) {
    for (int i=1; i<num_queues(); i++) pop_command_queue();
    cuCtxDestroy(_context);
  }
  _device=-1;
}

// List all devices along with all properties
void UCL_Device::print_all(std::ostream &out) {
  #if CUDA_VERSION >= 2020
  int driver_version;
  cuDriverGetVersion(&driver_version);
  out << "CUDA Driver Version:                           "
      << driver_version/1000 << "." << driver_version%100
                  << std::endl;
  #endif

  if (num_devices() == 0)
    out << "There is no device supporting CUDA\n";
  for (int i=0; i<num_devices(); ++i) {
    out << "\nDevice " << i << ": \"" << name(i) << "\"\n";
    out << "  Type of device:                                "
        << device_type_name(i).c_str() << std::endl;
    out << "  Compute capability:                            "
        << arch(i) << std::endl;
    out << "  Double precision support:                      ";
    if (double_precision(i))
      out << "Yes\n";
    else
      out << "No\n";
    out << "  Total amount of global memory:                 "
        << gigabytes(i) << " GB\n";
    #if CUDA_VERSION >= 2000
    out << "  Number of compute units/multiprocessors:       "
        << _properties[i].multiProcessorCount << std::endl;
    out << "  Number of cores:                               "
        << cores(i) << std::endl;
    #endif
    out << "  Total amount of constant memory:               "
        << _properties[i].totalConstantMemory << " bytes\n";
    out << "  Total amount of local/shared memory per block: "
        << _properties[i].sharedMemPerBlock << " bytes\n";
    out << "  Total number of registers available per block: "
        << _properties[i].regsPerBlock << std::endl;
    out << "  Warp size:                                     "
        << _properties[i].SIMDWidth << std::endl;
    out << "  Maximum number of threads per block:           "
        << _properties[i].maxThreadsPerBlock << std::endl;
    out << "  Maximum group size (# of threads per block)    "
        << _properties[i].maxThreadsDim[0] << " x "
        << _properties[i].maxThreadsDim[1] << " x "
        << _properties[i].maxThreadsDim[2] << std::endl;
    out << "  Maximum item sizes (# threads for each dim)    "
        << _properties[i].maxGridSize[0] << " x "
        << _properties[i].maxGridSize[1] << " x "
        << _properties[i].maxGridSize[2] << std::endl;
    out << "  Maximum memory pitch:                          "
        << max_pitch(i) << " bytes\n";
    out << "  Texture alignment:                             "
        << _properties[i].textureAlign << " bytes\n";
    out << "  Clock rate:                                    "
        << clock_rate(i) << " GHz\n";
    #if CUDA_VERSION >= 2020
    out << "  Run time limit on kernels:                     ";
    if (_properties[i].kernelExecTimeoutEnabled)
      out << "Yes\n";
    else
      out << "No\n";
    out << "  Integrated:                                    ";
    if (_properties[i].integrated)
      out << "Yes\n";
    else
      out << "No\n";
    out << "  Support host page-locked memory mapping:       ";
    if (_properties[i].canMapHostMemory)
      out << "Yes\n";
    else
      out << "No\n";
    out << "  Compute mode:                                  ";
    if (_properties[i].computeMode == CU_COMPUTEMODE_DEFAULT)
      out << "Default\n"; // multiple threads can use device
#if CUDA_VERSION >= 8000
    else if (_properties[i].computeMode == CU_COMPUTEMODE_EXCLUSIVE_PROCESS)
#else
    else if (_properties[i].computeMode == CU_COMPUTEMODE_EXCLUSIVE)
#endif
      out << "Exclusive\n"; // only thread can use device
    else if (_properties[i].computeMode == CU_COMPUTEMODE_PROHIBITED)
      out << "Prohibited\n"; // no thread can use device
    #if CUDART_VERSION >= 4000
    else if (_properties[i].computeMode == CU_COMPUTEMODE_EXCLUSIVE_PROCESS)
      out << "Exclusive Process\n"; // multiple threads 1 process
    #endif
    else
      out << "Unknown\n";
    #endif
    #if CUDA_VERSION >= 3010
    out << "  Concurrent kernel execution:                   ";
    if (_properties[i].concurrentKernels)
      out << "Yes\n";
    else
      out << "No\n";
    out << "  Device has ECC support enabled:                ";
    if (_properties[i].ECCEnabled)
      out << "Yes\n";
    else
      out << "No\n";
    #endif
  }
}

}

#endif