1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
|
/***************************************************************************
ocl_device.h
-------------------
W. Michael Brown
Utilities for dealing with OpenCL devices
__________________________________________________________________________
This file is part of the Geryon Unified Coprocessor Library (UCL)
__________________________________________________________________________
begin : Mon Dec 23 2009
copyright : (C) 2009 by W. Michael Brown
email : brownw@ornl.gov
***************************************************************************/
/* -----------------------------------------------------------------------
Copyright (2009) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the Simplified BSD License.
----------------------------------------------------------------------- */
#ifndef OCL_DEVICE
#define OCL_DEVICE
#include <string>
#include <vector>
#include <iostream>
#ifndef CL_TARGET_OPENCL_VERSION
#define CL_TARGET_OPENCL_VERSION 300
#endif
#ifdef __APPLE__
#include <OpenCL/cl.h>
#include <OpenCL/cl_platform.h>
#else
#include <CL/cl.h>
#include <CL/cl_platform.h>
#endif
#include "ocl_macros.h"
#include "ucl_types.h"
namespace ucl_opencl {
// --------------------------------------------------------------------------
// - COMMAND QUEUE STUFF
// --------------------------------------------------------------------------
typedef cl_command_queue command_queue;
typedef cl_context context_type;
inline void ucl_flush(command_queue &cq) { CL_SAFE_CALL(clFlush(cq)); }
inline void ucl_sync(cl_command_queue &cq) {
CL_SAFE_CALL(clFinish(cq));
}
#if defined(GERYON_FORCE_SHARED_MAIN_MEM_ON)
inline bool _shared_mem_device(cl_device_id &device) { return true; }
#elif defined(GERYON_FORCE_SHARED_MAIN_MEM_OFF)
inline bool _shared_mem_device(cl_device_id &device) { return false; }
#else
inline bool _shared_mem_device(cl_device_id &device) {
#ifdef CL_VERSION_1_2
cl_bool br;
CL_SAFE_CALL(clGetDeviceInfo(device, CL_DEVICE_HOST_UNIFIED_MEMORY,
sizeof(cl_bool), &br,NULL));
return (br == CL_TRUE);
#else
cl_device_type device_type;
CL_SAFE_CALL(clGetDeviceInfo(device,CL_DEVICE_TYPE,
sizeof(device_type),&device_type,NULL));
return (device_type==CL_DEVICE_TYPE_CPU);
#endif
}
#endif
struct OCLProperties {
std::string name;
cl_device_type device_type;
bool is_subdevice;
cl_ulong global_mem;
cl_ulong shared_mem;
cl_ulong const_mem;
cl_uint compute_units;
cl_uint clock;
size_t work_group_size;
size_t work_item_size[3];
bool double_precision;
int preferred_vector_width32, preferred_vector_width64;
int alignment;
size_t timer_resolution;
bool ecc_support;
std::string c_version;
bool partition_equal, partition_counts, partition_affinity;
cl_uint max_sub_devices;
int cl_device_version;
bool has_subgroup_support;
bool has_shuffle_support;
};
/// Class for looking at data parallel device properties
/** \note Calls to change the device outside of the class results in incorrect
* behavior
* \note There is no error checking for indexing past the number of devices **/
class UCL_Device {
public:
/// Collect properties for every device on the node
/** \note You must set the active GPU with set() before using the device **/
inline UCL_Device();
inline ~UCL_Device();
/// Return the number of platforms (0 if error or no platforms)
inline int num_platforms() { return _num_platforms; }
/// Return a string with name and info of the current platform
inline std::string platform_name();
/// Delete any contexts/data and set the platform number to be used
inline int set_platform(const int pid);
/// Return the number of devices that support OpenCL
inline int num_devices() { return _num_devices; }
/// Set the OpenCL device to the specified device number
/** A context and default command queue will be created for the device *
* Returns UCL_SUCCESS if successful or UCL_ERROR if the device could not
* be allocated for use. clear() is called to delete any contexts and
* associated data from previous calls to set(). **/
inline int set(int num);
/// Delete any context and associated data stored from a call to set()
inline void clear();
/// Get the current device number
inline int device_num() { return _device; }
/// Returns the context for the current device
inline cl_context & context() { return _context; }
/// Returns the default stream for the current device
inline command_queue & cq() { return cq(_default_cq); }
/// Returns the stream indexed by i
inline command_queue & cq(const int i) { return _cq[i]; }
/// Set the default command queue
/** \param i index of the command queue (as added by push_command_queue())
If i is 0, the command queue created with device initialization is
used **/
inline void set_command_queue(const int i) { _default_cq=i; }
/// Block until all commands in the default stream have completed
inline void sync() { sync(_default_cq); }
/// Block until all commands in the specified stream have completed
inline void sync(const int i) { ucl_sync(cq(i)); }
/// Get the number of command queues currently available on device
inline int num_queues()
{ return _cq.size(); }
/// Add a command queue for device computations (with profiling enabled)
inline void push_command_queue() {
cl_int errorv;
_cq.push_back(cl_command_queue());
#ifdef CL_VERSION_2_0
cl_queue_properties props[] = {CL_QUEUE_PROPERTIES, CL_QUEUE_PROFILING_ENABLE, 0};
_cq.back()=clCreateCommandQueueWithProperties(_context, _cl_device, props, &errorv);
#else
_cq.back()=clCreateCommandQueue(_context, _cl_device, CL_QUEUE_PROFILING_ENABLE, &errorv);
#endif
if (errorv!=CL_SUCCESS) {
std::cerr << "Could not create command queue on device: " << name()
<< std::endl;
UCL_GERYON_EXIT;
}
}
/// Remove a stream for device computations
/** \note You cannot delete the default stream **/
inline void pop_command_queue() {
if (_cq.size()<2) return;
CL_SAFE_CALL(clReleaseCommandQueue(_cq.back()));
_cq.pop_back();
}
/// Get the current OpenCL device name
inline std::string name() { return name(_device); }
/// Get the OpenCL device name
inline std::string name(const int i) {
return std::string(_properties[i].name); }
/// Get a string telling the type of the current device
inline std::string device_type_name() { return device_type_name(_device); }
/// Get a string telling the type of the device
inline std::string device_type_name(const int i);
/// Get current device type (UCL_CPU, UCL_GPU, UCL_ACCELERATOR, UCL_DEFAULT)
inline enum UCL_DEVICE_TYPE device_type() { return device_type(_device); }
/// Get device type (UCL_CPU, UCL_GPU, UCL_ACCELERATOR, UCL_DEFAULT)
inline enum UCL_DEVICE_TYPE device_type(const int i);
/// Returns true if host memory is efficiently addressable from device
inline bool shared_memory() { return shared_memory(_device); }
/// Returns true if host memory is efficiently addressable from device
inline bool shared_memory(const int i)
{ return _shared_mem_device(_cl_devices[i]); }
/// Returns preferred vector width
inline int preferred_fp32_width() { return preferred_fp32_width(_device); }
/// Returns preferred vector width
inline int preferred_fp32_width(const int i)
{return _properties[i].preferred_vector_width32;}
/// Returns preferred vector width
inline int preferred_fp64_width() { return preferred_fp64_width(_device); }
/// Returns preferred vector width
inline int preferred_fp64_width(const int i)
{return _properties[i].preferred_vector_width64;}
/// Returns true if double precision is support for the current device
inline bool double_precision() { return double_precision(_device); }
/// Returns true if double precision is support for the device
inline bool double_precision(const int i)
{return _properties[i].double_precision;}
/// Get the number of compute units on the current device
inline unsigned cus() { return cus(_device); }
/// Get the number of compute units
inline unsigned cus(const int i)
{ return _properties[i].compute_units; }
/// Get the gigabytes of global memory in the current device
inline double gigabytes() { return gigabytes(_device); }
/// Get the gigabytes of global memory
inline double gigabytes(const int i)
{ return static_cast<double>(_properties[i].global_mem)/1073741824; }
/// Get the bytes of global memory in the current device
inline size_t bytes() { return bytes(_device); }
/// Get the bytes of global memory
inline size_t bytes(const int i) { return _properties[i].global_mem; }
/// Return the GPGPU revision number for current device
//inline double revision() { return revision(_device); }
/// Return the GPGPU revision number
//inline double revision(const int i)
// { return //static_cast<double>(_properties[i].minor)/10+_properties[i].major;}
/// Clock rate in GHz for current device
inline double clock_rate() { return clock_rate(_device); }
/// Clock rate in GHz
inline double clock_rate(const int i) { return _properties[i].clock*1e-3;}
/// Return the address alignment in bytes
inline int alignment() { return alignment(_device); }
/// Return the address alignment in bytes
inline int alignment(const int i) { return _properties[i].alignment; }
/// Return the timer resolution
inline size_t timer_resolution() { return timer_resolution(_device); }
/// Return the timer resolution
inline size_t timer_resolution(const int i)
{ return _properties[i].timer_resolution; }
/// Get the maximum number of threads per block
inline size_t group_size() { return group_size(_device); }
/// Get the maximum number of threads per block
inline size_t group_size(const int i)
{ return _properties[i].work_group_size; }
/// Get the maximum number of threads per block in dimension 'dim'
inline size_t group_size_dim(const int dim)
{ return group_size_dim(_device, dim); }
/// Get the maximum number of threads per block in dimension 'dim'
inline size_t group_size_dim(const int i, const int dim)
{ return _properties[i].work_item_size[dim]; }
/// Get the shared local memory size in bytes
inline size_t slm_size() { return slm_size(_device); }
/// Get the shared local memory size in bytes
inline size_t slm_size(const int i)
{ return _properties[i].shared_mem; }
/// Return the maximum memory pitch in bytes for current device
inline size_t max_pitch() { return max_pitch(_device); }
/// Return the maximum memory pitch in bytes
inline size_t max_pitch(const int i) { return 0; }
/// Returns false if accelerator cannot be shared by multiple processes
/** If it cannot be determined, true is returned **/
inline bool sharing_supported() { return sharing_supported(_device); }
/// Returns false if accelerator cannot be shared by multiple processes
/** If it cannot be determined, true is returned **/
inline bool sharing_supported(const int i)
{ return true; }
/// True if the device is a sub-device
inline bool is_subdevice()
{ return is_subdevice(_device); }
/// True if the device is a sub-device
inline bool is_subdevice(const int i)
{ return _properties[i].is_subdevice; }
/// True if splitting device into equal subdevices supported
inline bool fission_equal()
{ return fission_equal(_device); }
/// True if splitting device into equal subdevices supported
inline bool fission_equal(const int i)
{ return _properties[i].partition_equal; }
/// True if splitting device into subdevices by specified counts supported
inline bool fission_by_counts()
{ return fission_by_counts(_device); }
/// True if splitting device into subdevices by specified counts supported
inline bool fission_by_counts(const int i)
{ return _properties[i].partition_counts; }
/// True if splitting device into subdevices by affinity domains supported
inline bool fission_by_affinity()
{ return fission_by_affinity(_device); }
/// True if splitting device into subdevices by affinity domains supported
inline bool fission_by_affinity(const int i)
{ return _properties[i].partition_affinity; }
/// True if the device has subgroup support
inline bool has_subgroup_support()
{ return has_subgroup_support(_device); }
/// True if the device has subgroup support
inline bool has_subgroup_support(const int i)
{ return _properties[i].has_subgroup_support; }
/// True if the device supports shuffle intrinsics
inline bool has_shuffle_support()
{ return has_shuffle_support(_device); }
/// True if the device supports shuffle intrinsics
inline bool has_shuffle_support(const int i)
{ return _properties[i].has_shuffle_support; }
/// Maximum number of subdevices allowed from device fission
inline int max_sub_devices()
{ return max_sub_devices(_device); }
/// Maximum number of subdevices allowed from device fission
inline int max_sub_devices(const int i)
{ return _properties[i].max_sub_devices; }
/// OpenCL version supported by the device
inline int cl_device_version()
{ return cl_device_version(_device); }
/// OpenCL version supported by the device
inline int cl_device_version(const int i)
{ return _properties[i].cl_device_version; }
/// List all devices along with all properties
inline void print_all(std::ostream &out);
/// Return the OpenCL type for the device
inline cl_device_id & cl_device() { return _cl_device; }
/// Automatically set the platform by type, vendor, and/or CU count
/** If first_device is positive, search restricted to platforms containing
* this device IDs. If ndevices is positive, search is restricted
* to platforms with at least that many devices **/
inline int auto_set_platform(const enum UCL_DEVICE_TYPE type=UCL_GPU,
const std::string vendor="",
const int ndevices=-1,
const int first_device=-1);
private:
int _num_platforms; // Number of platforms
int _platform; // UCL_Device ID for current platform
cl_platform_id _cl_platform; // OpenCL ID for current platform
cl_platform_id _cl_platforms[20]; // OpenCL IDs for all platforms
cl_context _context; // Context used for accessing the device
std::vector<cl_command_queue> _cq;// The default command queue for this device
int _device; // UCL_Device ID for current device
cl_device_id _cl_device; // OpenCL ID for current device
std::vector<cl_device_id> _cl_devices; // OpenCL IDs for all devices
int _num_devices; // Number of devices
std::vector<OCLProperties> _properties; // Properties for each device
inline void add_properties(cl_device_id);
inline int create_context();
int _default_cq;
};
// Grabs the properties for all devices
UCL_Device::UCL_Device() {
_device=-1;
// --- Get Number of Platforms
cl_uint nplatforms;
cl_int errorv=clGetPlatformIDs(20,_cl_platforms,&nplatforms);
if (errorv!=CL_SUCCESS) {
_num_platforms=0;
return;
} else
_num_platforms=static_cast<int>(nplatforms);
set_platform(0);
}
UCL_Device::~UCL_Device() {
clear();
}
void UCL_Device::clear() {
_properties.clear();
#ifdef GERYON_NUMA_FISSION
#ifdef CL_VERSION_1_2
for (int i=0; i<_cl_devices.size(); i++)
CL_DESTRUCT_CALL(clReleaseDevice(_cl_devices[i]));
#endif
#endif
_cl_devices.clear();
if (_device>-1) {
for (size_t i=0; i<_cq.size(); i++) {
CL_DESTRUCT_CALL(clReleaseCommandQueue(_cq.back()));
_cq.pop_back();
}
CL_DESTRUCT_CALL(clReleaseContext(_context));
}
_device=-1;
_num_devices=0;
}
int UCL_Device::set_platform(int pid) {
clear();
cl_int errorv;
_cl_device=0;
_device=-1;
_num_devices=0;
_default_cq=0;
#ifdef UCL_DEBUG
assert(pid<num_platforms());
#endif
_platform=pid;
_cl_platform=_cl_platforms[_platform];
// --- Get Number of Devices
cl_uint n;
errorv=clGetDeviceIDs(_cl_platform,CL_DEVICE_TYPE_ALL,0,nullptr,&n);
_num_devices=n;
if (errorv!=CL_SUCCESS || _num_devices==0) {
_num_devices=0;
return UCL_ERROR;
}
cl_device_id *device_list = new cl_device_id[_num_devices];
CL_SAFE_CALL(clGetDeviceIDs(_cl_platform,CL_DEVICE_TYPE_ALL,n,device_list,
&n));
#ifndef GERYON_NUMA_FISSION
// --- Store properties for each device
for (int i=0; i<_num_devices; i++) {
_cl_devices.push_back(device_list[i]);
add_properties(device_list[i]);
}
#else
// --- Create sub-devices for anything partitionable by NUMA and store props
int num_unpart = _num_devices;
_num_devices = 0;
for (int i=0; i<num_unpart; i++) {
cl_uint num_subdevices = 1;
#ifdef CL_VERSION_1_2
cl_device_affinity_domain adomain;
CL_SAFE_CALL(clGetDeviceInfo(device_list[i],
CL_DEVICE_PARTITION_AFFINITY_DOMAIN,
sizeof(cl_device_affinity_domain),
&adomain,NULL));
cl_device_partition_property props[3];
props[0]=CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN;
props[1]=CL_DEVICE_AFFINITY_DOMAIN_NUMA;
props[2]=0;
if (adomain & CL_DEVICE_AFFINITY_DOMAIN_NUMA)
CL_SAFE_CALL(clCreateSubDevices(device_list[i], props, 0, NULL,
&num_subdevices));
if (num_subdevices > 1) {
cl_device_id *subdevice_list = new cl_device_id[num_subdevices];
CL_SAFE_CALL(clCreateSubDevices(device_list[i], props, num_subdevices,
subdevice_list, &num_subdevices));
for (int j=0; j<num_subdevices; j++) {
_cl_devices.push_back(device_list[i]);
add_properties(device_list[i]);
_num_devices++;
}
delete[] subdevice_list;
} else {
_cl_devices.push_back(device_list[i]);
add_properties(device_list[i]);
_num_devices++;
}
#endif
} // for i
#endif
delete[] device_list;
return UCL_SUCCESS;
}
int UCL_Device::create_context() {
cl_int errorv;
cl_context_properties props[3];
props[0]=CL_CONTEXT_PLATFORM;
props[1]=_platform;
props[2]=0;
_context=clCreateContext(0,1,&_cl_device,nullptr,nullptr,&errorv);
if (errorv!=CL_SUCCESS) {
#ifndef UCL_NO_EXIT
std::cerr << "UCL Error: Could not access accelerator number " << _device
<< " for use.\n";
UCL_GERYON_EXIT;
#endif
return UCL_ERROR;
}
push_command_queue();
_default_cq=0;
return UCL_SUCCESS;
}
void UCL_Device::add_properties(cl_device_id device_list) {
OCLProperties op;
char buffer[1024];
cl_bool ans_bool;
CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_NAME,1024,buffer,nullptr));
op.name=buffer;
CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_GLOBAL_MEM_SIZE,
sizeof(op.global_mem),&op.global_mem,nullptr));
CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_LOCAL_MEM_SIZE,
sizeof(op.shared_mem),&op.shared_mem,nullptr));
CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE,
sizeof(op.const_mem),&op.const_mem,nullptr));
CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_TYPE,
sizeof(op.device_type),&op.device_type,nullptr));
CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_MAX_COMPUTE_UNITS,
sizeof(op.compute_units),&op.compute_units,
nullptr));
CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_MAX_CLOCK_FREQUENCY,
sizeof(op.clock),&op.clock,nullptr));
CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_MAX_WORK_GROUP_SIZE,
sizeof(op.work_group_size),&op.work_group_size,
nullptr));
CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_MAX_WORK_ITEM_SIZES,
3*sizeof(op.work_item_size[0]),op.work_item_size,
nullptr));
CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_MEM_BASE_ADDR_ALIGN,
sizeof(cl_uint),&op.alignment,nullptr));
op.alignment/=8;
cl_uint float_width;
CL_SAFE_CALL(clGetDeviceInfo(device_list,
CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT,
sizeof(float_width),&float_width,nullptr));
op.preferred_vector_width32=float_width;
cl_uint double_width;
CL_SAFE_CALL(clGetDeviceInfo(device_list,
CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE,
sizeof(double_width),&double_width,nullptr));
op.preferred_vector_width64=double_width;
// Determine if double precision is supported: All bits in the mask must be set.
cl_device_fp_config double_mask = (CL_FP_FMA|CL_FP_ROUND_TO_NEAREST|CL_FP_ROUND_TO_ZERO|
CL_FP_ROUND_TO_INF|CL_FP_INF_NAN|CL_FP_DENORM);
cl_device_fp_config double_avail;
CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_DOUBLE_FP_CONFIG,
sizeof(double_avail),&double_avail,nullptr));
if ((double_avail & double_mask) == double_mask)
op.double_precision=true;
else
op.double_precision=false;
CL_SAFE_CALL(clGetDeviceInfo(device_list,
CL_DEVICE_PROFILING_TIMER_RESOLUTION,
sizeof(size_t),&op.timer_resolution,nullptr));
op.ecc_support=false;
CL_SAFE_CALL(clGetDeviceInfo(device_list,
CL_DEVICE_ERROR_CORRECTION_SUPPORT,
sizeof(ans_bool),&ans_bool,nullptr));
if (ans_bool==CL_TRUE)
op.ecc_support=true;
op.c_version="";
op.is_subdevice=false;
op.partition_equal=false;
op.partition_counts=false;
op.partition_affinity=false;
op.max_sub_devices=1;
op.cl_device_version=0;
op.has_subgroup_support=false;
op.has_shuffle_support=false;
#ifdef CL_VERSION_1_2
size_t return_bytes;
CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_OPENCL_C_VERSION,1024,
buffer,nullptr));
op.c_version=buffer;
cl_device_partition_property pinfo[4];
CL_SAFE_CALL(clGetDeviceInfo(device_list, CL_DEVICE_PARTITION_TYPE,
4*sizeof(cl_device_partition_property),
&pinfo, &return_bytes));
if (return_bytes == 0) op.is_subdevice=false;
else if (pinfo[0]) op.is_subdevice=true;
else op.is_subdevice=false;
CL_SAFE_CALL(clGetDeviceInfo(device_list,
CL_DEVICE_PARTITION_PROPERTIES,
4*sizeof(cl_device_partition_property),
pinfo,&return_bytes));
int nprops=return_bytes/sizeof(cl_device_partition_property);
for (int i=0; i<nprops; i++) {
if (pinfo[i]==CL_DEVICE_PARTITION_EQUALLY)
op.partition_equal=true;
else if (pinfo[i]==CL_DEVICE_PARTITION_BY_COUNTS)
op.partition_counts=true;
else if (pinfo[i]==CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN)
op.partition_affinity=true;
}
CL_SAFE_CALL(clGetDeviceInfo(device_list,
CL_DEVICE_PARTITION_MAX_SUB_DEVICES,
sizeof(cl_uint),&op.max_sub_devices,nullptr));
CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_VERSION,1024,buffer,nullptr));
int cl_version_maj = buffer[7] - '0';
int cl_version_min = buffer[9] - '0';
op.cl_device_version = cl_version_maj * 100 + cl_version_min * 10;
size_t ext_str_size_ret;
CL_SAFE_CALL(clGetDeviceInfo(device_list, CL_DEVICE_EXTENSIONS, 0, nullptr,
&ext_str_size_ret));
char buffer2[ext_str_size_ret];
CL_SAFE_CALL(clGetDeviceInfo(device_list, CL_DEVICE_EXTENSIONS,
ext_str_size_ret, buffer2, nullptr));
#if defined(CL_VERSION_2_1) || defined(CL_VERSION_3_0)
if (op.cl_device_version >= 210) {
if ((std::string(buffer2).find("cl_khr_subgroups") != std::string::npos) ||
(std::string(buffer2).find("cl_intel_subgroups") != std::string::npos))
op.has_subgroup_support=true;
if (std::string(buffer2).find("cl_intel_subgroups") != std::string::npos)
op.has_shuffle_support=true;
}
#endif
if (std::string(buffer2).find("cl_nv_device_attribute_query") !=
std::string::npos) {
#ifndef CL_DEVICE_COMPUTE_CAPABILITY_MAJOR_NV
#define CL_DEVICE_COMPUTE_CAPABILITY_MAJOR_NV 0x4000
#endif
#ifndef CL_DEVICE_COMPUTE_CAPABILITY_MINOR_NV
#define CL_DEVICE_COMPUTE_CAPABILITY_MINOR_NV 0x4001
#endif
cl_uint major, minor;
CL_SAFE_CALL(clGetDeviceInfo(device_list,
CL_DEVICE_COMPUTE_CAPABILITY_MAJOR_NV,
sizeof(cl_uint), &major, nullptr));
CL_SAFE_CALL(clGetDeviceInfo(device_list,
CL_DEVICE_COMPUTE_CAPABILITY_MINOR_NV,
sizeof(cl_uint), &minor, nullptr));
double arch = static_cast<double>(minor)/10+major;
if (arch >= 3.0)
op.has_shuffle_support=true;
}
#endif
_properties.push_back(op);
}
std::string UCL_Device::platform_name() {
char info[1024];
CL_SAFE_CALL(clGetPlatformInfo(_cl_platform,CL_PLATFORM_VENDOR,1024,info,
nullptr));
std::string ans=std::string(info)+' ';
CL_SAFE_CALL(clGetPlatformInfo(_cl_platform,CL_PLATFORM_NAME,1024,info,
nullptr));
ans+=std::string(info)+' ';
CL_SAFE_CALL(clGetPlatformInfo(_cl_platform,CL_PLATFORM_VERSION,1024,info,
nullptr));
ans+=std::string(info);
return ans;
}
// Get a string telling the type of the device
std::string UCL_Device::device_type_name(const int i) {
if (_properties[i].device_type==CL_DEVICE_TYPE_CPU)
return "CPU";
else if (_properties[i].device_type==CL_DEVICE_TYPE_GPU)
return "GPU";
else if (_properties[i].device_type==CL_DEVICE_TYPE_ACCELERATOR)
return "ACCELERATOR";
else
return "DEFAULT";
}
// Get a string telling the type of the device
enum UCL_DEVICE_TYPE UCL_Device::device_type(const int i) {
if (_properties[i].device_type==CL_DEVICE_TYPE_CPU)
return UCL_CPU;
else if (_properties[i].device_type==CL_DEVICE_TYPE_GPU)
return UCL_GPU;
else if (_properties[i].device_type==CL_DEVICE_TYPE_ACCELERATOR)
return UCL_ACCELERATOR;
else
return UCL_DEFAULT;
}
// Set the CUDA device to the specified device number
int UCL_Device::set(int num) {
_device=num;
_cl_device=_cl_devices[_device];
return create_context();
}
// List all devices from all platforms along with all properties
void UCL_Device::print_all(std::ostream &out) {
// --- loop through the platforms
for (int n=0; n<_num_platforms; n++) {
set_platform(n);
out << "\nPlatform " << n << ":\n";
if (num_devices() == 0)
out << "There is no device supporting OpenCL\n";
for (int i=0; i<num_devices(); ++i) {
out << "\nDevice " << i << ": \"" << name(i).c_str() << "\"\n";
out << " Type of device: "
<< device_type_name(i).c_str() << std::endl;
out << " Supported OpenCL Version: "
<< _properties[i].cl_device_version / 100 << "."
<< _properties[i].cl_device_version % 100 << std::endl;
out << " Is a subdevice: ";
if (is_subdevice(i))
out << "Yes\n";
else
out << "No\n";
out << " Double precision support: ";
if (double_precision(i))
out << "Yes\n";
else
out << "No\n";
out << " Total amount of global memory: "
<< gigabytes(i) << " GB\n";
out << " Number of compute units/multiprocessors: "
<< _properties[i].compute_units << std::endl;
//out << " Number of cores: "
// << cores(i) << std::endl;
out << " Total amount of constant memory: "
<< _properties[i].const_mem << " bytes\n";
out << " Total amount of local/shared memory per block: "
<< _properties[i].shared_mem << " bytes\n";
//out << " Total number of registers available per block: "
// << _properties[i].regsPerBlock << std::endl;
//out << " Warp size: "
// << _properties[i].warpSize << std::endl;
out << " Maximum group size (# of threads per block) "
<< _properties[i].work_group_size << std::endl;
out << " Maximum item sizes (# threads for each dim) "
<< _properties[i].work_item_size[0] << " x "
<< _properties[i].work_item_size[1] << " x "
<< _properties[i].work_item_size[2] << std::endl;
//out << " Maximum sizes of each dimension of a grid: "
// << _properties[i].maxGridSize[0] << " x "
// << _properties[i].maxGridSize[1] << " x "
// << _properties[i].maxGridSize[2] << std::endl;
//out << " Maximum memory pitch: "
// << _properties[i].memPitch) << " bytes\n";
//out << " Texture alignment: "
// << _properties[i].textureAlignment << " bytes\n";
out << " Clock rate: "
<< clock_rate(i) << " GHz\n";
//out << " Concurrent copy and execution: ";
out << " ECC support: ";
if (_properties[i].ecc_support)
out << "Yes\n";
else
out << "No\n";
out << " Device fission into equal partitions: ";
if (fission_equal(i))
out << "Yes\n";
else
out << "No\n";
out << " Device fission by counts: ";
if (fission_by_counts(i))
out << "Yes\n";
else
out << "No\n";
out << " Device fission by affinity: ";
if (fission_by_affinity(i))
out << "Yes\n";
else
out << "No\n";
out << " Maximum subdevices from fission: "
<< max_sub_devices(i) << std::endl;
out << " Shared memory system: ";
if (shared_memory(i))
out << "Yes\n";
else
out << "No\n";
out << " Subgroup support: ";
if (_properties[i].has_subgroup_support)
out << "Yes\n";
else
out << "No\n";
out << " Shuffle support: ";
if (_properties[i].has_shuffle_support)
out << "Yes\n";
else
out << "No\n";
}
}
}
int UCL_Device::auto_set_platform(const enum UCL_DEVICE_TYPE type,
const std::string vendor,
const int ndevices,
const int first_device) {
if (_num_platforms < 2) return set_platform(0);
int last_device = -1;
if (first_device > -1) {
if (ndevices)
last_device = first_device + ndevices - 1;
else
last_device = first_device;
}
bool vendor_match=false;
bool type_match=false;
int max_cus=0;
int best_platform=0;
std::string vendor_upper=vendor;
for (int i=0; i<vendor.length(); i++)
if (vendor_upper[i]<='z' && vendor_upper[i]>='a')
vendor_upper[i]=toupper(vendor_upper[i]);
for (int n=0; n<_num_platforms; n++) {
set_platform(n);
if (last_device > -1 && last_device >= num_devices()) continue;
if (ndevices > num_devices()) continue;
int first_id=0;
int last_id=num_devices()-1;
if (last_device > -1) {
first_id=first_device;
last_id=last_device;
}
if (vendor_upper!="") {
std::string pname = platform_name();
for (int i=0; i<pname.length(); i++)
if (pname[i]<='z' && pname[i]>='a')
pname[i]=toupper(pname[i]);
if (pname.find(vendor_upper)!=std::string::npos) {
if (vendor_match == false) {
best_platform=n;
max_cus=0;
vendor_match=true;
}
} else if (vendor_match)
continue;
}
if (type != UCL_DEFAULT) {
bool ptype_matched=false;
for (int d=first_id; d<=last_id; d++) {
if (type==device_type(d)) {
if (type_match == false) {
best_platform=n;
max_cus=0;
type_match=true;
ptype_matched=true;
}
}
}
if (type_match==true && ptype_matched==false)
continue;
}
for (int d=first_id; d<=last_id; d++) {
if (cus(d) > max_cus) {
best_platform=n;
max_cus=cus(d);
}
}
}
return set_platform(best_platform);
}
} // namespace ucl_opencl
#endif
|