File: ucl_d_vec.h

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (491 lines) | stat: -rw-r--r-- 18,544 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/***************************************************************************
                                 ucl_d_vec.h
                             -------------------
                               W. Michael Brown

  Vector Container on Device

 __________________________________________________________________________
    This file is part of the Geryon Unified Coprocessor Library (UCL)
 __________________________________________________________________________

    begin                : Thu Jun 25 2009
    copyright            : (C) 2009 by W. Michael Brown
    email                : brownw@ornl.gov
 ***************************************************************************/

/* -----------------------------------------------------------------------
   Copyright (2009) Sandia Corporation.  Under the terms of Contract
   DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
   certain rights in this software.  This software is distributed under
   the Simplified BSD License.
   ----------------------------------------------------------------------- */

// Only allow this file to be included by CUDA and OpenCL specific headers
#ifdef _UCL_MAT_ALLOW

/// Row vector on device
template <class numtyp>
class UCL_D_Vec : public UCL_BaseMat {
 public:
  // Traits for copying data
  // MEM_TYPE is 0 for device, 1 for host, and 2 for image
  enum traits {
    DATA_TYPE = _UCL_DATA_ID<numtyp>::id,
    MEM_TYPE = 0,
    PADDED = 0,
    ROW_MAJOR = 1,
    VECTOR = 1
  };
  typedef numtyp data_type;

 UCL_D_Vec() : _row_bytes(0), _cols(0) {}
  ~UCL_D_Vec() { _device_free(*this); }

  /// Construct with n columns
  /** \sa alloc() **/
  UCL_D_Vec(const size_t n, UCL_Device &device,
            const enum UCL_MEMOPT kind=UCL_READ_WRITE) :
    _cols(0) { alloc(n,device,kind); }

  /// Set up host vector with 'cols' columns and reserve memory
  /** The kind parameter controls memory optimizations as follows:
    * - UCL_READ_WRITE - Specify that you will read and write in kernels
    * - UCL_WRITE_ONLY - Specify that you will only write in kernels
    * - UCL_READ_ONLY  - Specify that you will only read in kernels
    * \param cq Default command queue for operations copied from another mat
    * \return UCL_SUCCESS if the memory allocation is successful **/
  template <class mat_type>
  inline int alloc(const size_t cols, mat_type &cq,
                   const enum UCL_MEMOPT kind=UCL_READ_WRITE) {

    clear();

    _row_bytes=cols*sizeof(numtyp);
    int err=_device_alloc(*this,cq,_row_bytes,kind);
    if (err!=UCL_SUCCESS) {
      #ifndef UCL_NO_EXIT
      std::cerr << "UCL Error: Could not allocate " << _row_bytes
                << " bytes on device.\n";
      _row_bytes=0;
      UCL_GERYON_EXIT;
      #endif
      _row_bytes=0;
      return err;
    }

    _kind=kind;
    _cols=cols;
    #ifndef _UCL_DEVICE_PTR_MAT
    _end=_array+cols;
    #endif
    #ifdef _OCL_MAT
    _offset=0;
    #endif
    return err;
  }

  /// Set up host vector with 'cols' columns and reserve memory
  /** The kind parameter controls memory optimizations as follows:
    * - UCL_READ_WRITE - Specify that you will read and write in kernels
    * - UCL_WRITE_ONLY - Specify that you will only write in kernels
    * - UCL_READ_ONLY  - Specify that you will only read in kernels
    * \param device Used to get the default command queue for operations
    * \return UCL_SUCCESS if the memory allocation is successful **/
  inline int alloc(const size_t cols, UCL_Device &device,
                   const enum UCL_MEMOPT kind=UCL_READ_WRITE) {
    clear();
    _row_bytes=cols*sizeof(numtyp);
    int err=_device_alloc(*this,device,_row_bytes,kind);
    if (err!=UCL_SUCCESS) {
      #ifndef UCL_NO_EXIT
      std::cerr << "UCL Error: Could not allocate " << _row_bytes
                << " bytes on device.\n";
      _row_bytes=0;
      UCL_GERYON_EXIT;
      #endif
      _row_bytes=0;
      return err;
    }

    _kind=kind;
    _cols=cols;
    #ifndef _UCL_DEVICE_PTR_MAT
    _end=_array+cols;
    #endif
    #ifdef _OCL_MAT
    _offset=0;
    #endif
    return err;
  }

  /// Do not allocate memory, instead use an existing allocation from Geryon
  /** This function must be passed a Geryon vector or matrix container.
    * No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs **/
  template <class ucl_type>
  inline void view(ucl_type &input, const size_t rows, const size_t cols) {
    #ifdef UCL_DEBUG
    assert(rows==1);
    #endif
    clear();
    _kind=UCL_VIEW;
    _cols=cols;
    _row_bytes=_cols*sizeof(numtyp);
    this->_cq=input.cq();
    #ifdef _OCL_MAT
    _offset=input.offset();
    _array=input.cbegin();
    CL_SAFE_CALL(clRetainMemObject(input.cbegin()));
    CL_SAFE_CALL(clRetainCommandQueue(input.cq()));
    #else
    _device_view(&_array,input.begin());
    #endif

    #ifndef _UCL_DEVICE_PTR_MAT
    _end=_array+_cols;
    #endif
  }

  /// Do not allocate memory, instead use an existing allocation from Geryon
  /** This function must be passed a Geryon vector or matrix container.
    * No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs
    * \param stride Number of _elements_ between the start of each row **/
  template <class ucl_type>
  inline void view(ucl_type &input, const size_t rows, const size_t cols,
                   const size_t stride) { view(input,rows,cols); }

  /// Do not allocate memory, instead use an existing allocation from Geryon
  /** This function must be passed a Geryon vector or matrix container.
    * No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs
    * - If a matrix is used a input, all elements (including padding)
    *   will be used for view **/
  template <class ucl_type>
  inline void view(ucl_type &input, const size_t cols)
    { view(input,1,cols); }

  /// Do not allocate memory, instead use an existing allocation from Geryon
  /** This function must be passed a Geryon vector or matrix container.
    * No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs
    * - If a matrix is used a input, all elements (including padding)
    *   will be used for view **/
  template <class ucl_type>
  inline void view(ucl_type &input)
    { view(input,input.rows()*input.row_size()); }

  /// Do not allocate memory, instead use an existing allocation
  /** - No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs **/
  template <class ptr_type>
  inline void view(ptr_type input, const size_t rows, const size_t cols,
                   UCL_Device &dev) {
    #ifdef UCL_DEBUG
    assert(rows==1);
    #endif
    clear();
    _kind=UCL_VIEW;
    _cols=cols;
    _row_bytes=_cols*sizeof(numtyp);
    this->_cq=dev.cq();
    _array=input;
    #ifndef _UCL_DEVICE_PTR_MAT
    _end=_array+_cols;
    #endif
    #ifdef _OCL_MAT
    _offset=0;
    CL_SAFE_CALL(clRetainMemObject(input));
    CL_SAFE_CALL(clRetainCommandQueue(dev.cq()));
    #endif
  }

  /// Do not allocate memory, instead use an existing allocation
  /** - No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs
    * \param stride Number of _elements_ between the start of each row **/
  template <class ptr_type>
  inline void view(ptr_type input, const size_t rows, const size_t cols,
                   const size_t stride, UCL_Device &dev)
    { view(input,rows,cols,stride); }

  /// Do not allocate memory, instead use an existing allocation
  /** - No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs **/
  template <class ptr_type>
  inline void view(ptr_type input, const size_t cols, UCL_Device &dev)
    { view(input,1,cols,dev); }

  /// Do not allocate memory, instead use an existing allocation from Geryon
  /** This function must be passed a Geryon vector or matrix container.
    * No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs **/
  template <class ucl_type>
  inline void view_offset(const size_t offset,ucl_type &input,const size_t rows,
                          const size_t cols) {
    #ifdef UCL_DEBUG
    assert(rows==1);
    #endif
    clear();
    _kind=UCL_VIEW;
    _cols=cols;
    _row_bytes=_cols*sizeof(numtyp);
    this->_cq=input.cq();
    #ifdef _OCL_MAT
    _array=input.begin();
    _offset=offset+input.offset();
    CL_SAFE_CALL(clRetainMemObject(input.begin()));
    CL_SAFE_CALL(clRetainCommandQueue(input.cq()));
    #else
    _device_view(&_array,input.begin(),offset,sizeof(numtyp));
    #endif

    #ifndef _UCL_DEVICE_PTR_MAT
    _end=_array+_cols;
    #endif
  }

  /// Do not allocate memory, instead use an existing allocation from Geryon
  /** This function must be passed a Geryon vector or matrix container.
    * No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs
    * \param stride Number of _elements_ between the start of each row **/
  template <class ucl_type>
  inline void view_offset(const size_t offset,ucl_type &input,const size_t rows,
                          const size_t cols, const size_t stride)
    { view_offset(offset,input,rows,cols); }

  /// Do not allocate memory, instead use an existing allocation from Geryon
  /** This function must be passed a Geryon vector or matrix container.
    * No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs
    * - If a matrix is used a input, all elements (including padding)
    *   will be used for view **/
  template <class ucl_type>
  inline void view_offset(const size_t offset,ucl_type &input,const size_t cols)
    { view_offset(offset,input,1,cols); }

  /// Do not allocate memory, instead use an existing allocation from Geryon
  /** This function must be passed a Geryon vector or matrix container.
    * No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs
    * - If a matrix is used a input, all elements (including padding)
    *   will be used for view **/
  template <class ucl_type>
  inline void view_offset(const size_t offset, ucl_type &input)
    { view_offset(offset,input,input.rows()*input.row_size()-offset); }

  /// Do not allocate memory, instead use an existing allocation
  /** - No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs **/
  template <class ptr_type>
  inline void view_offset(const size_t offset,ptr_type input,const size_t rows,
                          const size_t cols, UCL_Device &dev) {
    #ifdef UCL_DEBUG
    assert(rows==1);
    #endif
    clear();
    _kind=UCL_VIEW;
    _cols=cols;
    _row_bytes=_cols*sizeof(numtyp);
    this->_cq=dev.cq();

    #ifdef _OCL_MAT
    _array=input;
    _offset=offset;
    CL_SAFE_CALL(clRetainMemObject(input));
    CL_SAFE_CALL(clRetainCommandQueue(dev.cq()));
    #else
    #ifdef _UCL_DEVICE_PTR_MAT
    _array=input+offset*sizeof(numtyp);
    #else
    _array=input+offset;
    #endif
    #endif

    #ifndef _UCL_DEVICE_PTR_MAT
    _end=_array+_cols;
    #endif
  }

  /// Do not allocate memory, instead use an existing allocation
  /** - No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs
    * \param stride Number of _elements_ between the start of each row **/
  template <class ptr_type>
  inline void view_offset(const size_t offset,ptr_type input,const size_t rows,
                          const size_t cols,const size_t stride,UCL_Device &dev)
    { view_offset(offset,input,rows,cols,stride); }

  /// Do not allocate memory, instead use an existing allocation
  /** - No memory is freed when the object is destructed.
    * - The view does not prevent the memory from being freed by the
    *   allocating container when using CUDA APIs **/
  template <class ptr_type>
  inline void view_offset(const size_t offset, ptr_type input,
                          const size_t cols, UCL_Device &dev)
    { view_offset(offset,input,1,cols,dev); }

  /// Free memory and set size to 0
  inline void clear()
    { _device_free(*this); _cols=0; _kind=UCL_VIEW;  }

  /// Resize the allocation to contain cols elements
  /** \note Cannot be used on views **/
  inline int resize(const int cols) {
    assert(_kind!=UCL_VIEW);

    _row_bytes=cols*sizeof(numtyp);
    int err=_device_resize(*this,_row_bytes);
    if (err!=UCL_SUCCESS) {
      #ifndef UCL_NO_EXIT
      std::cerr << "UCL Error: Could not allocate " << _row_bytes
                << " bytes on device.\n";
      _row_bytes=0;
      UCL_GERYON_EXIT;
      #endif
      _row_bytes=0;
      return err;
    }

    _cols=cols;
    #ifndef _UCL_DEVICE_PTR_MAT
    _end=_array+cols;
    #endif
    #ifdef _OCL_MAT
    _offset=0;
    #endif
    return err;
  }

  /// Resize (only if bigger) the allocation to contain cols elements
  /** \note Cannot be used on views **/
  inline int resize_ib(const int cols)
    { if (cols>_cols) return resize(cols); else return UCL_SUCCESS; }

  /// Set each element to zero asynchronously in the default command_queue
  inline void zero() { zero(_cq); }
  /// Set first n elements to zero asynchronously in the default command_queue
  inline void zero(const int n) { zero(n,_cq); }
  /// Set each element to zero asynchronously
  inline void zero(command_queue &cq) { _device_zero(*this,row_bytes(),cq); }
  /// Set first n elements to zero asynchronously
  inline void zero(const int n, command_queue &cq)
    { _device_zero(*this,n*sizeof(numtyp),cq); }

  #ifdef _UCL_DEVICE_PTR_MAT
  /// For OpenCL, returns a (void *) device pointer to memory allocation
  inline device_ptr & begin() { return _array; }
  /// For OpenCL, returns a (void *) device pointer to memory allocation
  inline const device_ptr & begin() const { return _array; }
  #else
  /// For CUDA-RT, get device pointer to first element
  inline numtyp * & begin() { return _array; }
  /// For CUDA-RT, get device pointer to first element
  inline numtyp * const & begin() const { return _array; }
  /// For CUDA-RT, get device pointer to one past last element
  inline numtyp * end() { return _end; }
  /// For CUDA-RT, get device pointer to one past last element
  inline numtyp * end() const { return _end; }
  #endif

  #ifdef _UCL_DEVICE_PTR_MAT
  /// Returns an API specific device pointer
  /** - For OpenCL, returns a &cl_mem object
    * - For CUDA Driver, returns a &CUdeviceptr
    * - For CUDA-RT, returns void** **/
  inline device_ptr & cbegin() { return _array; }
  /// Returns an API specific device pointer
  /** - For OpenCL, returns a &cl_mem object
    * - For CUDA Driver, returns a &CUdeviceptr
    * - For CUDA-RT, returns void** **/
  inline const device_ptr & cbegin() const { return _array; }
  #else
  /// Returns an API specific device pointer
  /** - For OpenCL, returns a &cl_mem object
    * - For CUDA Driver, returns a &CUdeviceptr
    * - For CUDA-RT, returns numtyp** **/
  inline numtyp ** cbegin() { return &_array; }
  /// Returns an API specific device pointer
  /** - For OpenCL, returns a &cl_mem object
    * - For CUDA Driver, returns a &CUdeviceptr
    * - For CUDA-RT, returns numtyp** **/
  inline const numtyp ** cbegin() const { return &_array; }
  /// For CUDA-RT, allocate row vector and bind texture
  inline void safe_alloc(const size_t cols, UCL_Device &dev,
                         textureReference *t)
    { alloc(cols,dev); assign_texture(t); bind(); }
  /// For CUDA-RT, assign a texture to matrix
  inline void assign_texture(textureReference *t) { _tex_ptr=t; }
  /// For CUDA-RT, bind to texture
  inline void bind() {
    cuda_gb_get_channel<numtyp>(_channel);
    (*_tex_ptr).addressMode[0] = cudaAddressModeClamp;
    (*_tex_ptr).addressMode[1] = cudaAddressModeClamp;
    (*_tex_ptr).filterMode = cudaFilterModePoint;
    (*_tex_ptr).normalized = false;
    CUDA_SAFE_CALL(cudaBindTexture(nullptr,_tex_ptr,_array,&_channel));
  }
  /// For CUDA-RT, unbind texture
  inline void unbind() { CUDA_SAFE_CALL(cudaUnbindTexture(_tex_ptr)); }
  #endif

  /// Get the number of elements
  inline size_t numel() const { return _cols; }
  /// Get the number of rows
  inline size_t rows() const { return 1; }
  /// Get the number of columns
  inline size_t cols() const { return _cols; }
  ///Get the size of a row (including any padding) in elements
  inline size_t row_size() const { return _cols; }
  /// Get the size of a row (including any padding) in bytes
  inline size_t row_bytes() const { return _row_bytes; }
  /// Get the size in bytes of 1 element
  inline int element_size() const { return sizeof(numtyp); }

  #ifdef _OCL_MAT
  /// Return the offset (in elements) from begin() pointer where data starts
  /** \note Always 0 for host matrices and CUDA APIs **/
  inline size_t offset() const { return _offset; }
  #else
  /// Return the offset (in elements) from begin() pointer where data starts
  /** \note Always 0 for host matrices and CUDA APIs **/
  inline size_t offset() const { return 0; }
  #endif

  /// Return the offset (in bytes) from begin() pointer where data starts
  /** \note Always 0 for host matrices and CUDA APIs **/
  inline size_t byteoff() const { return offset()*sizeof(numtyp); }

 private:
  size_t _row_bytes, _row_size, _rows, _cols;

  #ifdef _UCL_DEVICE_PTR_MAT
  device_ptr _array;
  #else
  numtyp *_array,*_end;
  cudaChannelFormatDesc _channel;
  textureReference *_tex_ptr;
  #endif

  #ifdef _OCL_MAT
  size_t _offset;
  #endif
};

#endif