1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/***************************************************************************
charmm.cpp
-------------------
W. Michael Brown (ORNL)
Class for acceleration of the charmm/coul pair style.
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin :
email : brownw@ornl.gov
***************************************************************************/
#if defined(USE_OPENCL)
#include "charmm_cl.h"
#elif defined(USE_CUDART)
const char *charmm_long=0;
#else
#include "charmm_cubin.h"
#endif
#include "lal_charmm.h"
#include <cassert>
namespace LAMMPS_AL {
#define CHARMMT CHARMM<numtyp, acctyp>
extern Device<PRECISION,ACC_PRECISION> device;
template <class numtyp, class acctyp>
CHARMMT::CHARMM() : BaseCharge<numtyp,acctyp>(),
_allocated(false) {
}
template <class numtyp, class acctyp>
CHARMMT::~CHARMM() {
clear();
}
template <class numtyp, class acctyp>
int CHARMMT::bytes_per_atom(const int max_nbors) const {
return this->bytes_per_atom_atomic(max_nbors);
}
template <class numtyp, class acctyp>
int CHARMMT::init(const int ntypes, double host_cut_bothsq, double **host_lj1,
double **host_lj2, double **host_lj3, double **host_lj4,
double *host_special_lj, const int nlocal, const int nall,
const int max_nbors, const int maxspecial,
const double cell_size, const double gpu_split,
FILE *_screen, double host_cut_ljsq,
const double host_cut_coulsq, double *host_special_coul,
const double qqrd2e, const double cut_lj_innersq,
const double cut_coul_innersq, const double denom_lj,
const double denom_coul, double **epsilon,
double **sigma, const bool mix_arithmetic) {
int success;
success=this->init_atomic(nlocal,nall,max_nbors,maxspecial,cell_size,
gpu_split,_screen,charmm,"k_charmm");
if (success!=0)
return success;
// If atom type constants fit in shared memory use fast kernel
int lj_types=ntypes;
shared_types=false;
int max_bio_shared_types=this->device->max_bio_shared_types();
if (this->_block_bio_size>=64 && mix_arithmetic &&
lj_types<=max_bio_shared_types)
shared_types=true;
_lj_types=lj_types;
// Allocate a host write buffer for data initialization
int h_size=lj_types*lj_types;
if (h_size<max_bio_shared_types)
h_size=max_bio_shared_types;
UCL_H_Vec<numtyp> host_write(h_size*32,*(this->ucl_device),
UCL_WRITE_ONLY);
for (int i=0; i<h_size*32; i++)
host_write[i]=0.0;
lj1.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,lj1,host_write,host_lj1,host_lj2,
host_lj3,host_lj4);
if (shared_types) {
ljd.alloc(max_bio_shared_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->self_pack2(ntypes,ljd,host_write,epsilon,sigma);
}
sp_lj.alloc(8,*(this->ucl_device),UCL_READ_ONLY);
for (int i=0; i<4; i++) {
host_write[i]=host_special_lj[i];
host_write[i+4]=host_special_coul[i];
}
ucl_copy(sp_lj,host_write,8,false);
_cut_bothsq = host_cut_bothsq;
_cut_coulsq = host_cut_coulsq;
_cut_ljsq = host_cut_ljsq;
_cut_lj_innersq = cut_lj_innersq;
_cut_coul_innersq = cut_coul_innersq;
_qqrd2e=qqrd2e;
_denom_lj=denom_lj;
_denom_coul=denom_coul;
_allocated=true;
this->_max_bytes=lj1.row_bytes()+ljd.row_bytes()+sp_lj.row_bytes();
return 0;
}
template <class numtyp, class acctyp>
void CHARMMT::clear() {
if (!_allocated)
return;
_allocated=false;
lj1.clear();
ljd.clear();
sp_lj.clear();
this->clear_atomic();
}
template <class numtyp, class acctyp>
double CHARMMT::host_memory_usage() const {
return this->host_memory_usage_atomic()+sizeof(CHARMM<numtyp,acctyp>);
}
// ---------------------------------------------------------------------------
// Calculate energies, forces, and torques
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int CHARMMT::loop(const int eflag, const int vflag) {
// Compute the block size and grid size to keep all cores busy
const int BX=this->_block_bio_size;
int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/this->_threads_per_atom)));
int ainum=this->ans->inum();
int nbor_pitch=this->nbor->nbor_pitch();
this->time_pair.start();
if (shared_types) {
this->k_pair_sel->set_size(GX,BX);
this->k_pair_sel->run(&this->atom->x, &ljd, &sp_lj,
&this->nbor->dev_nbor, this->_nbor_data,
&this->ans->force, &this->ans->engv, &eflag,
&vflag, &ainum, &nbor_pitch, &this->atom->q,
&_cut_coulsq, &_qqrd2e, &_denom_lj, &_denom_coul,
&_cut_bothsq, &_cut_ljsq, &_cut_lj_innersq,
&_cut_coul_innersq, &this->_threads_per_atom);
} else {
this->k_pair.set_size(GX,BX);
this->k_pair.run(&this->atom->x, &lj1, &_lj_types, &sp_lj,
&this->nbor->dev_nbor, this->_nbor_data,
&this->ans->force, &this->ans->engv, &eflag,
&vflag, &ainum, &nbor_pitch, &this->atom->q,
&_cut_coulsq, &_qqrd2e, &_denom_lj, &_denom_coul,
&_cut_bothsq, &_cut_ljsq, &_cut_lj_innersq,
&_cut_coul_innersq, &this->_threads_per_atom);
}
this->time_pair.stop();
return GX;
}
template class CHARMM<PRECISION,ACC_PRECISION>;
}
|