File: lal_coul_long_ext.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (145 lines) | stat: -rw-r--r-- 5,277 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/***************************************************************************
                              coul_long_ext.cpp
                             -------------------
                           Axel Kohlmeyer (Temple)

  Functions for LAMMPS access to coul/long acceleration routines.

 __________________________________________________________________________
    This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
 __________________________________________________________________________

    begin                : July 2011
    email                : a.kohlmeyer@temple.edu
 ***************************************************************************/

#include <iostream>
#include <cassert>
#include <cmath>

#include "lal_coul_long.h"

using namespace std;
using namespace LAMMPS_AL;

static CoulLong<PRECISION,ACC_PRECISION> CLMF;

// ---------------------------------------------------------------------------
// Allocate memory on host and device and copy constants to device
// ---------------------------------------------------------------------------
int cl_gpu_init(const int ntypes, double **host_scale,
                const int inum, const int nall, const int max_nbors,
                const int maxspecial, const double cell_size, int &gpu_mode,
                FILE *screen, double host_cut_coulsq, double *host_special_coul,
                const double qqrd2e, const double g_ewald) {
  CLMF.clear();
  gpu_mode=CLMF.device->gpu_mode();
  double gpu_split=CLMF.device->particle_split();
  int first_gpu=CLMF.device->first_device();
  int last_gpu=CLMF.device->last_device();
  int world_me=CLMF.device->world_me();
  int gpu_rank=CLMF.device->gpu_rank();
  int procs_per_gpu=CLMF.device->procs_per_gpu();

  CLMF.device->init_message(screen,"coul/long",first_gpu,last_gpu);

  bool message=false;
  if (CLMF.device->replica_me()==0 && screen)
    message=true;

  if (message) {
    fprintf(screen,"Initializing Device and compiling on process 0...");
    fflush(screen);
  }

  int init_ok=0;
  if (world_me==0)
    init_ok=CLMF.init(ntypes, host_scale, inum, nall, max_nbors, maxspecial,
                      cell_size, gpu_split, screen, host_cut_coulsq,
                      host_special_coul, qqrd2e, g_ewald);

  CLMF.device->world_barrier();
  if (message)
    fprintf(screen,"Done.\n");

  for (int i=0; i<procs_per_gpu; i++) {
    if (message) {
      if (last_gpu-first_gpu==0)
        fprintf(screen,"Initializing Device %d on core %d...",first_gpu,i);
      else
        fprintf(screen,"Initializing Devices %d-%d on core %d...",first_gpu,
                last_gpu,i);
      fflush(screen);
    }
    if (gpu_rank==i && world_me!=0)
      init_ok=CLMF.init(ntypes, host_scale, inum, nall, max_nbors, maxspecial,
                        cell_size, gpu_split, screen, host_cut_coulsq,
                        host_special_coul, qqrd2e, g_ewald);

    CLMF.device->gpu_barrier();
    if (message)
      fprintf(screen,"Done.\n");
  }
  if (message)
    fprintf(screen,"\n");

  if (init_ok==0)
    CLMF.estimate_gpu_overhead();
  return init_ok;
}

// ---------------------------------------------------------------------------
// Copy updated coeffs from host to device
// ---------------------------------------------------------------------------
void cl_gpu_reinit(const int ntypes, double **host_scale) {
  int world_me=CLMF.device->world_me();
  int gpu_rank=CLMF.device->gpu_rank();
  int procs_per_gpu=CLMF.device->procs_per_gpu();

  if (world_me==0)
    CLMF.reinit(ntypes, host_scale);

  CLMF.device->world_barrier();

  for (int i=0; i<procs_per_gpu; i++) {
    if (gpu_rank==i && world_me!=0)
      CLMF.reinit(ntypes, host_scale);

    CLMF.device->gpu_barrier();
  }
}

void cl_gpu_clear() {
  CLMF.clear();
}

int** cl_gpu_compute_n(const int ago, const int inum_full,
                       const int nall, double **host_x, int *host_type,
                       double *sublo, double *subhi, tagint *tag, int **nspecial,
                       tagint **special, const bool eflag, const bool vflag,
                       const bool eatom, const bool vatom, int &host_start,
                       int **ilist, int **jnum,  const double cpu_time,
                       bool &success, double *host_q, double *boxlo,
                       double *prd) {
  return CLMF.compute(ago, inum_full, nall, host_x, host_type, sublo,
                      subhi, tag, nspecial, special, eflag, vflag, eatom,
                      vatom, host_start, ilist, jnum, cpu_time, success,
                      host_q, boxlo, prd);
}

void cl_gpu_compute(const int ago, const int inum_full, const int nall,
                    double **host_x, int *host_type, int *ilist, int *numj,
                    int **firstneigh, const bool eflag, const bool vflag,
                    const bool eatom, const bool vatom, int &host_start,
                    const double cpu_time, bool &success, double *host_q,
                    const int nlocal, double *boxlo, double *prd) {
  CLMF.compute(ago,inum_full,nall,host_x,host_type,ilist,numj,
               firstneigh,eflag,vflag,eatom,vatom,host_start,cpu_time,success,
               host_q,nlocal,boxlo,prd);
}

double cl_gpu_bytes() {
  return CLMF.host_memory_usage();
}