File: lal_device.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (1127 lines) | stat: -rw-r--r-- 36,730 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
/***************************************************************************
                                  device.cpp
                             -------------------
                            W. Michael Brown (ORNL)

  Class for management of the device where the computations are performed

 __________________________________________________________________________
    This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
 __________________________________________________________________________

    begin                :
    email                : brownw@ornl.gov
 ***************************************************************************/

#include "lal_device.h"
#include "lal_precision.h"
#include <map>
#include <cmath>
#include <cstdlib>
#include <iostream>
#if (LAL_USE_OMP == 1)
#include <omp.h>
#endif

#if defined(USE_OPENCL)
#include "device_cl.h"

#ifdef LAL_OCL_EXTRA_ARGS
#define LAL_DM_STRINGIFY(x) #x
#define LAL_PRE_STRINGIFY(x) LAL_DM_STRINGIFY(x)
#endif

#elif defined(USE_CUDART)
const char *device=0;
#else
#include "device_cubin.h"
#endif

namespace LAMMPS_AL {
#define DeviceT Device<numtyp, acctyp>

template <class numtyp, class acctyp>
DeviceT::Device() : _init_count(0), _device_init(false),
                    _gpu_mode(GPU_FORCE), _first_device(0),
                    _last_device(0), _platform_id(-1), _compiled(false) {
}

template <class numtyp, class acctyp>
DeviceT::~Device() {
  clear_device();
}

template <class numtyp, class acctyp>
int DeviceT::init_device(MPI_Comm world, MPI_Comm replica, const int ngpu,
                         const int first_gpu_id, const int gpu_mode,
                         const double p_split, const int t_per_atom,
                         const double user_cell_size, char *ocl_args,
                         const int ocl_platform, char *device_type_flags,
                         const int block_pair) {
  _threads_per_atom=t_per_atom;
  _threads_per_charge=t_per_atom;
  _threads_per_three=t_per_atom;

  if (_device_init)
    return 0;
  _device_init=true;
  _comm_world=replica; //world;
  _comm_replica=replica;
  int ndevices=ngpu;
  _first_device=first_gpu_id;
  _gpu_mode=gpu_mode;
  _particle_split=p_split;
  _user_cell_size=user_cell_size;
  _block_pair=block_pair;

  // support selecting OpenCL platform id with "package platform" keyword
  if (ocl_platform >= 0)
    _platform_id = ocl_platform;

  gpu=new UCL_Device();

  // ---------------------- OpenCL Compiler Args -------------------------
  std::string extra_args="";
  if (ocl_args) extra_args+=":"+std::string(ocl_args);
  #ifdef LAL_OCL_EXTRA_ARGS
  extra_args+=":" LAL_PRE_STRINGIFY(LAL_OCL_EXTRA_ARGS);
  #endif
  for (int i=0; i<extra_args.length(); i++)
    if (extra_args[i]==':') extra_args[i]=' ';

  // --------------------------- MPI setup -------------------------------

  // Get the rank/size within the world
  MPI_Comm_rank(_comm_world,&_world_me);
  MPI_Comm_size(_comm_world,&_world_size);
  // Get the rank/size within the replica
  MPI_Comm_rank(_comm_replica,&_replica_me);
  MPI_Comm_size(_comm_replica,&_replica_size);

  // Get the names of all nodes
  int name_length;
  char node_name[MPI_MAX_PROCESSOR_NAME];
  char *node_names = new char[MPI_MAX_PROCESSOR_NAME*_world_size];
  MPI_Get_processor_name(node_name,&name_length);
  MPI_Allgather(&node_name,MPI_MAX_PROCESSOR_NAME,MPI_CHAR,&node_names[0],
                MPI_MAX_PROCESSOR_NAME,MPI_CHAR,_comm_world);
  std::string node_string=std::string(node_name);

  // Get the number of procs per node
  std::map<std::string,int> name_map;
  std::map<std::string,int>::iterator np;
  for (int i=0; i<_world_size; i++) {
    std::string i_string=std::string(&node_names[i*MPI_MAX_PROCESSOR_NAME]);
    np=name_map.find(i_string);
    if (np==name_map.end())
      name_map[i_string]=1;
    else
      np->second++;
  }
  int procs_per_node=name_map.begin()->second;

  // Assign a unique id to each node
  int split_num=0, split_id=0;
  for (np=name_map.begin(); np!=name_map.end(); ++np) {
    if (np->first==node_string)
      split_id=split_num;
    split_num++;
  }
  delete[] node_names;

  // Set up a per node communicator and find rank within
  MPI_Comm node_comm;
  MPI_Comm_split(_comm_world, split_id, 0, &node_comm);
  int node_rank;
  MPI_Comm_rank(node_comm,&node_rank);

  // ------------------- Device selection parameters----------------------

  if (ndevices > procs_per_node)
    ndevices = procs_per_node;

  // --------------------- OCL Platform Selection  -----------------------

  // Setup OpenCL platform and parameters based on platform
  // and device type specifications
  std::string ocl_vstring="";
  if (device_type_flags != nullptr) ocl_vstring=device_type_flags;

  // Setup the OpenCL platform
  // If multiple platforms and no user platform specified,
  // try to match platform from config matching any user specified
  // device type. Give preference to platforms with GPUs.
  // Priority under these conditions to platform with device with
  // highest compute unit count.
  int pres;
  enum UCL_DEVICE_TYPE type=UCL_GPU;
  #ifndef USE_OPENCL
  pres=gpu->set_platform(0);
  #else
  if (_platform_id>=0)
    pres=gpu->set_platform(_platform_id);
  else {
    std::string vendor="";
    if (device_type_flags!=nullptr) {
      if (ocl_vstring=="intelgpu")
        vendor="intel";
      else if (ocl_vstring=="intelcpu") {
        vendor="intel";
        type=UCL_CPU;
      } else if (ocl_vstring=="nvidiagpu")
        vendor="nvidia";
      else if (ocl_vstring=="amdgpu")
        vendor="amd";
      else if (ocl_vstring=="applegpu")
        vendor="apple";
    }
    pres=gpu->auto_set_platform(type,vendor,ndevices,_first_device);
  }
  #endif
  if (pres != UCL_SUCCESS)
    return -12;

  // ------------------------ Device Selection ---------------------------
  if (_first_device > -1 && _first_device >= gpu->num_devices())
    return -2;
  if (ndevices > gpu->num_devices())
    return -2;
  if (_first_device + ndevices > gpu->num_devices())
    return -2;
  if (gpu->num_devices()==0)
    return -2;

  // Fully specified deviceIDs
  if (_first_device > -1 && ndevices > 0)
    _last_device = _first_device + ndevices - 1;

  // Find deviceID with most CUs (priority given to the accelerator type)
  if (_first_device < 0) {
    int best_device = 0;
    int best_cus = gpu->cus(0);
    bool type_match = (gpu->device_type(0) == type);
    for (int i = 1; i < gpu->num_devices(); i++) {
      if (type_match==true && gpu->device_type(i)!=type)
        continue;
      if (type_match == false && gpu->device_type(i) == type) {
        type_match = true;
        best_cus = gpu->cus(i);
        best_device = i;
      }
      if (gpu->cus(i) > best_cus) {
        best_cus = gpu->cus(i);
        best_device = i;
      }
    }
    _first_device = _last_device = best_device;
    type = gpu->device_type(_first_device);

    if (ndevices > 0) {
      // Expand range to meet specified number of devices
      while (_last_device - _first_device < ndevices - 1) {
        if (_last_device + 1 == gpu->num_devices())
          _first_device--;
        else if (_first_device == 0)
          _last_device++;
        else {
          if (gpu->device_type(_last_device+1)==type &&
              gpu->device_type(_first_device-1)!=type)
            _last_device++;
          else if (gpu->device_type(_last_device+1)!=type &&
                   gpu->device_type(_first_device-1)==type)
            _first_device--;
          else if (gpu->cus(_last_device+1) > gpu->cus(_first_device-1))
            _last_device++;
          else
            _first_device--;
        }
      }
    }
  }

  // If ngpus not specified, expand range to include matching devices
  if (ndevices == 0) {
    for (int i = _first_device; i < gpu->num_devices(); i++) {
      if (gpu->device_type(i)==gpu->device_type(_first_device) &&
          gpu->cus(i)==gpu->cus(_first_device))
        _last_device = i;
      else
        break;
    }
    ndevices = _last_device - _first_device + 1;
    if (ndevices > procs_per_node) {
      ndevices = procs_per_node;
      _last_device=_first_device + ndevices - 1;
    }
  }

  // ------------------------ MPI Device ID Setup -----------------------

  // set the device ID
  _procs_per_gpu=static_cast<int>(ceil(static_cast<double>(procs_per_node)/
                                       ndevices));
  int my_gpu=node_rank/_procs_per_gpu+_first_device;

  // Time on the device only if 1 proc per gpu
  _time_device=true;

#if 0
  // XXX: the following setting triggers a memory leak with OpenCL and MPI
  //      setting _time_device=true for all processes doesn't seem to be a
  //      problem with either (no segfault, no (large) memory leak.
  //      thus keeping this disabled for now. may need to review later.
  //      2018-07-23 <akohlmey@gmail.com>
  if (_procs_per_gpu>1)
    _time_device=false;
#endif

  // Set up a per device communicator
  MPI_Comm_split(node_comm,my_gpu,0,&_comm_gpu);
  MPI_Comm_rank(_comm_gpu,&_gpu_rank);

  #if !defined(CUDA_PROXY) && !defined(CUDA_MPS_SUPPORT)
  if (_procs_per_gpu>1 && gpu->sharing_supported(my_gpu)==false)
    return -7;
  #endif

  // --------------- Device Configuration and Setup  -------------------------

  if (gpu->set(my_gpu)!=UCL_SUCCESS)
    return -6;

  #if !defined(USE_OPENCL) && !defined(USE_HIP)
  if (gpu->arch()<7.0) {
    gpu->push_command_queue();
    gpu->set_command_queue(1);
  }
  #endif

  _long_range_precompute=0;

  // If OpenCL parameters not specified by user, try to auto detect
  // best option from the platform config
  #ifdef USE_OPENCL
  if (device_type_flags==nullptr) {
    std::string pname = gpu->platform_name();
    for (int i=0; i<pname.length(); i++)
      if (pname[i]<='z' && pname[i]>='a')
        pname[i]=toupper(pname[i]);
    if (pname.find("NVIDIA")!=std::string::npos)
      ocl_vstring="nvidiagpu";
    else if (pname.find("INTEL")!=std::string::npos) {
      if (gpu->device_type()==UCL_GPU)
        ocl_vstring="intelgpu";
      else if (gpu->device_type()==UCL_CPU)
        ocl_vstring="intelcpu";
    } else if (pname.find("AMD")!=std::string::npos) {
      if (gpu->device_type()==UCL_GPU)
        ocl_vstring="amdgpu";
    } else if (pname.find("APPLE")!=std::string::npos) {
      if (gpu->device_type()==UCL_GPU)
        ocl_vstring="applegpu";
    }
  }
  #endif

  if (set_ocl_params(ocl_vstring, extra_args)!=0)
    return -11;

  int flag=0;
  for (int i=0; i<_procs_per_gpu; i++) {
    if (_gpu_rank==i)
      flag=compile_kernels();
    gpu_barrier();
  }

  // check if double precision support is available
  #if defined(_SINGLE_DOUBLE) || defined(_DOUBLE_DOUBLE)
  if (!gpu->double_precision())
    return -16;
  #endif

  // Setup auto bin size calculation for calls from atom::sort
  // - This is repeated in neighbor init with additional info
  if (_user_cell_size<0.0) {
    #ifndef LAL_USE_OLD_NEIGHBOR
    _neighbor_shared.setup_auto_cell_size(true,0,_simd_size);
    #else
    _neighbor_shared.setup_auto_cell_size(false,0,_simd_size);
    #endif
  } else
    _neighbor_shared.setup_auto_cell_size(false,_user_cell_size,_simd_size);

  return flag;
}

template <class numtyp, class acctyp>
int DeviceT::set_ocl_params(std::string s_config, const std::string &extra_args) {
  #ifdef USE_OPENCL

  #include "lal_pre_ocl_config.h"

  if (s_config=="" || s_config=="none")
    s_config="generic";

  int config_index=-1;
  for (int i=0; i<nconfigs; i++)
    if (s_config==std::string(ocl_config_names[i]))
      config_index=i;

  if (config_index != -1)
    s_config=ocl_config_strings[config_index];

  _ocl_config_name="CUSTOM";
  int token_count=0;
  std::string params[18];
  char ocl_config[2048];
  strncpy(ocl_config,s_config.c_str(),2047);
  char *pch = strtok(ocl_config,",");
  _ocl_config_name=pch;
  pch = strtok(nullptr,",");
  if (pch == nullptr) return -11;
  while (pch != nullptr) {
    if (token_count==18)
      return -11;
    params[token_count]=pch;
    token_count++;
    pch = strtok(nullptr,",");
  }

  _ocl_compile_string="-cl-mad-enable ";
  if (params[4]!="0") _ocl_compile_string+="-cl-fast-relaxed-math ";
  _ocl_compile_string+=std::string(OCL_INT_TYPE)+" "+
    std::string(OCL_PRECISION_COMPILE);
  if (gpu->has_subgroup_support())
    _ocl_compile_string+=" -DUSE_OPENCL_SUBGROUPS";
  #ifdef LAL_USE_OLD_NEIGHBOR
  _ocl_compile_string+=" -DLAL_USE_OLD_NEIGHBOR";
  #endif

  _ocl_compile_string += " -DCONFIG_ID="+params[0]+
                         " -DSIMD_SIZE="+params[1]+
                         " -DMEM_THREADS="+params[2];
  if (gpu->has_shuffle_support()==false)
    _ocl_compile_string+=" -DSHUFFLE_AVAIL=0";
  else
    _ocl_compile_string+=" -DSHUFFLE_AVAIL="+params[3];
  _ocl_compile_string += " -DFAST_MATH="+params[4]+

                         " -DTHREADS_PER_ATOM="+params[5]+
                         " -DTHREADS_PER_CHARGE="+params[6]+
                         " -DTHREADS_PER_THREE="+params[7]+

                         " -DBLOCK_PAIR="+params[8]+
                         " -DBLOCK_BIO_PAIR="+params[9]+
                         " -DBLOCK_ELLIPSE="+params[10]+
                         " -DPPPM_BLOCK_1D="+params[11]+
                         " -DBLOCK_NBOR_BUILD="+params[12]+
                         " -DBLOCK_CELL_2D="+params[13]+
                         " -DBLOCK_CELL_ID="+params[14]+

                         " -DMAX_SHARED_TYPES="+params[15]+
                         " -DMAX_BIO_SHARED_TYPES="+params[16]+
                         " -DPPPM_MAX_SPLINE="+params[17];
  _ocl_compile_string += extra_args;
  #endif
  return 0;
}

template <class numtyp, class acctyp>
std::string DeviceT::compile_string_nofast() {
  std::string no_fast = _ocl_compile_string;
  size_t p = no_fast.find("-cl-fast-relaxed-math ");
  if (p != std::string::npos) no_fast.erase(p,22);
  p = no_fast.find("-DFAST_MATH=");
  if (p != std::string::npos) no_fast[p + 12]='0';
  return no_fast;
}

template <class numtyp, class acctyp>
int DeviceT::init(Answer<numtyp,acctyp> &ans, const bool charge,
                  const bool rot, const int nlocal,
                  const int nall, const int maxspecial,
                  const bool vel) {
  if (!_device_init)
    return -1;
  if (sizeof(acctyp)==sizeof(double) && gpu->double_precision()==false)
    return -5;

  // Counts of data transfers for timing overhead estimates
  _data_in_estimate=0;
  _data_out_estimate=1;

  // Initial number of local particles
  int ef_nlocal=nlocal;
  if (_particle_split<1.0 && _particle_split>0.0)
    ef_nlocal=static_cast<int>(_particle_split*nlocal);

  int gpu_nbor=0;
  if (_gpu_mode==Device<numtyp,acctyp>::GPU_NEIGH)
    gpu_nbor=1;
  else if (_gpu_mode==Device<numtyp,acctyp>::GPU_HYB_NEIGH)
    gpu_nbor=2;
  #if !defined(USE_CUDPP) && !defined(USE_HIP_DEVICE_SORT)
  if (gpu_nbor==1) gpu_nbor=2;
  #endif
  #ifndef LAL_USE_OLD_NEIGHBOR
  if (gpu_nbor==1) gpu_nbor=2;
  #endif

  if (_init_count==0) {
    // Initialize atom and nbor data
    if (!atom.init(nall,charge,rot,*gpu,gpu_nbor,gpu_nbor>0 && maxspecial>0,vel))
      return -3;

    _data_in_estimate++;
    if (charge)
      _data_in_estimate++;
    if (rot)
      _data_in_estimate++;
    if (vel)
      _data_in_estimate++;
  } else {
    if (atom.charge()==false && charge)
      _data_in_estimate++;
    if (atom.quaternion()==false && rot)
      _data_in_estimate++;
    if (atom.velocity()==false && vel)
      _data_in_estimate++;
    if (!atom.add_fields(charge,rot,gpu_nbor,gpu_nbor>0 && maxspecial,vel))
      return -3;
  }

  if (!ans.init(ef_nlocal,charge,rot,*gpu))
    return -3;

  _init_count++;
  return 0;
}

template <class numtyp, class acctyp>
int DeviceT::init(Answer<numtyp,acctyp> &ans, const int nlocal,
                         const int nall) {
  if (!_device_init)
    return -1;
  if (sizeof(acctyp)==sizeof(double) && gpu->double_precision()==false)
    return -5;

  if (_init_count==0) {
    // Initialize atom and nbor data
    if (!atom.init(nall,true,false,*gpu,false,false))
      return -3;
  } else
    if (!atom.add_fields(true,false,false,false))
      return -3;

  if (!ans.init(nlocal,true,false,*gpu))
    return -3;

  _init_count++;
  return 0;
}

template <class numtyp, class acctyp>
int DeviceT::init_nbor(Neighbor *nbor, const int nlocal,
                       const int host_nlocal, const int nall,
                       const int maxspecial, const int gpu_host,
                       const int max_nbors, const double cutoff,
                       const bool pre_cut, const int threads_per_atom,
                       const bool ilist_map) {
  int ef_nlocal=nlocal;
  if (_particle_split<1.0 && _particle_split>0.0)
    ef_nlocal=static_cast<int>(_particle_split*nlocal);

  int gpu_nbor=0;
  if (_gpu_mode==Device<numtyp,acctyp>::GPU_NEIGH)
    gpu_nbor=1;
  else if (_gpu_mode==Device<numtyp,acctyp>::GPU_HYB_NEIGH)
    gpu_nbor=2;
  #if !defined(USE_CUDPP) && !defined(USE_HIP_DEVICE_SORT)
  if (gpu_nbor==1)
    gpu_nbor=2;
  #endif
  #ifndef LAL_USE_OLD_NEIGHBOR
  if (gpu_nbor==1)
    gpu_nbor=2;
  #endif

  if (!nbor->init(&_neighbor_shared,ef_nlocal,host_nlocal,max_nbors,maxspecial,
                  *gpu,gpu_nbor,gpu_host,pre_cut,_block_cell_2d,
                  _block_cell_id, _block_nbor_build, threads_per_atom,
                  _simd_size, _time_device, compile_string(), ilist_map))
    return -3;

  if (_user_cell_size<0.0) {
    _neighbor_shared.setup_auto_cell_size(false,cutoff,nbor->simd_size());
  } else
    _neighbor_shared.setup_auto_cell_size(false,_user_cell_size,nbor->simd_size());
  nbor->set_cutoff(cutoff);

  return 0;
}

template <class numtyp, class acctyp>
void DeviceT::set_single_precompute
                     (PPPM<numtyp,acctyp,float,_lgpu_float4> *pppm) {
  _long_range_precompute=1;
  pppm_single=pppm;
}

template <class numtyp, class acctyp>
void DeviceT::set_double_precompute
                     (PPPM<numtyp,acctyp,double,_lgpu_double4> *pppm) {
  _long_range_precompute=2;
  pppm_double=pppm;
}

template <class numtyp, class acctyp>
void DeviceT::init_message(FILE *screen, const char *name,
                           const int first_gpu, const int last_gpu) {
  #if defined(USE_OPENCL)
  std::string fs="";
  #elif defined(USE_CUDART)
  std::string fs="";
  #else
  std::string fs=toa(gpu->free_gigabytes())+"/";
  #endif

  if (_replica_me == 0 && screen) {
    fprintf(screen,"\n-------------------------------------");
    fprintf(screen,"-------------------------------------\n");
    fprintf(screen,"- Using acceleration for %s:\n",name);
    fprintf(screen,"-  with %d proc(s) per device.\n",_procs_per_gpu);
    #if (LAL_USE_OMP == 1)
    fprintf(screen,"-  with %d thread(s) per proc.\n", omp_get_max_threads());
    #endif
    #ifdef USE_OPENCL
    fprintf(screen,"-  with OpenCL Parameters for: %s (%d)\n",
            _ocl_config_name.c_str(),_config_id);
    #endif
    if (shuffle_avail())
      fprintf(screen,"-  Horizontal vector operations: ENABLED\n");
    else
      fprintf(screen,"-  Horizontal vector operations: DISABLED\n");
    if (gpu->shared_memory(first_gpu))
      fprintf(screen,"-  Shared memory system: Yes\n");
    else
      fprintf(screen,"-  Shared memory system: No\n");
    fprintf(screen,"-------------------------------------");
    fprintf(screen,"-------------------------------------\n");

    int last=last_gpu+1;
    if (last>gpu->num_devices())
      last=gpu->num_devices();
    for (int i=first_gpu; i<last; i++) {
      std::string sname;
      if (i==first_gpu)
        sname=gpu->name(i)+", "+toa(gpu->cus(i))+" CUs, "+fs+
              toa(gpu->gigabytes(i))+" GB, "+toa(gpu->clock_rate(i))+" GHZ (";
      else
        sname=gpu->name(i)+", "+toa(gpu->cus(i))+" CUs, "+
              toa(gpu->clock_rate(i))+" GHZ (";
      if (sizeof(PRECISION)==4) {
        if (sizeof(ACC_PRECISION)==4)
          sname+="Single Precision)";
        else
          sname+="Mixed Precision)";
      } else
        sname+="Double Precision)";

      fprintf(screen,"Device %d: %s\n",i,sname.c_str());
    }

    fprintf(screen,"-------------------------------------");
    fprintf(screen,"-------------------------------------\n\n");
  }
}

template <class numtyp, class acctyp>
void DeviceT::estimate_gpu_overhead(const int kernel_calls,
                                    double &gpu_overhead,
                                    double &gpu_driver_overhead) {
  UCL_H_Vec<int> *host_data_in=nullptr, *host_data_out=nullptr;
  UCL_D_Vec<int> *dev_data_in=nullptr, *dev_data_out=nullptr,
    *kernel_data=nullptr;
  UCL_Timer *timers_in=nullptr, *timers_out=nullptr, *timers_kernel=nullptr;
  UCL_Timer over_timer(*gpu);

  if (_data_in_estimate>0) {
    host_data_in=new UCL_H_Vec<int>[_data_in_estimate];
    dev_data_in=new UCL_D_Vec<int>[_data_in_estimate];
    timers_in=new UCL_Timer[_data_in_estimate];
  }

  if (_data_out_estimate>0) {
    host_data_out=new UCL_H_Vec<int>[_data_out_estimate];
    dev_data_out=new UCL_D_Vec<int>[_data_out_estimate];
    timers_out=new UCL_Timer[_data_out_estimate];
  }

  if (kernel_calls>0) {
    kernel_data=new UCL_D_Vec<int>[kernel_calls];
    timers_kernel=new UCL_Timer[kernel_calls];
  }

  for (int i=0; i<_data_in_estimate; i++) {
    host_data_in[i].alloc(1,*gpu);
    dev_data_in[i].alloc(1,*gpu);
    timers_in[i].init(*gpu);
  }

  for (int i=0; i<_data_out_estimate; i++) {
    host_data_out[i].alloc(1,*gpu);
    dev_data_out[i].alloc(1,*gpu);
    timers_out[i].init(*gpu);
  }

  for (int i=0; i<kernel_calls; i++) {
    kernel_data[i].alloc(1,*gpu);
    timers_kernel[i].init(*gpu);
  }

  gpu_overhead=0.0;
  gpu_driver_overhead=0.0;

  for (int z=0; z<11; z++) {
    gpu->sync();
    gpu_barrier();
    over_timer.start();
    gpu->sync();
    gpu_barrier();

    double driver_time=MPI_Wtime();
    for (int i=0; i<_data_in_estimate; i++) {
      timers_in[i].start();
      ucl_copy(dev_data_in[i],host_data_in[i],true);
      timers_in[i].stop();
    }

    const int numel=1;
    for (int i=0; i<kernel_calls; i++) {
      timers_kernel[i].start();
      k_zero.set_size(1,_block_pair);
      k_zero.run(&(kernel_data[i]),&numel);
      timers_kernel[i].stop();
    }

    for (int i=0; i<_data_out_estimate; i++) {
      timers_out[i].start();
      ucl_copy(host_data_out[i],dev_data_out[i],true);
      timers_out[i].stop();
    }
    over_timer.stop();
    #ifndef GERYON_OCL_FLUSH
    if (_data_out_estimate)
      dev_data_out[0].flush();
    #endif
    driver_time=MPI_Wtime()-driver_time;
    double time=over_timer.seconds();

    if (time_device()) {
      for (int i=0; i<_data_in_estimate; i++)
        timers_in[i].add_to_total();
      for (int i=0; i<kernel_calls; i++)
        timers_kernel[i].add_to_total();
      for (int i=0; i<_data_out_estimate; i++)
        timers_out[i].add_to_total();
    }

    double mpi_time, mpi_driver_time;
    MPI_Allreduce(&time,&mpi_time,1,MPI_DOUBLE,MPI_MAX,gpu_comm());
    MPI_Allreduce(&driver_time,&mpi_driver_time,1,MPI_DOUBLE,MPI_MAX,
                  gpu_comm());
    if (z>0) {
      gpu_overhead+=mpi_time;
      gpu_driver_overhead+=mpi_driver_time;
    }
  }
  gpu_overhead/=10.0;
  gpu_driver_overhead/=10.0;

  if (_data_in_estimate>0) {
    delete [] host_data_in;
    delete [] dev_data_in;
    delete [] timers_in;
  }

  if (_data_out_estimate>0) {
    delete [] host_data_out;
    delete [] dev_data_out;
    delete [] timers_out;
  }

  if (kernel_calls>0) {
    delete [] kernel_data;
    delete [] timers_kernel;
  }
}

template <class numtyp, class acctyp>
void DeviceT::output_times(UCL_Timer &time_pair, Answer<numtyp,acctyp> &ans,
                           Neighbor &nbor, const double avg_split,
                           const double max_bytes, const double gpu_overhead,
                           const double driver_overhead,
                           const int threads_per_atom, FILE *screen) {
  double single[9], times[9];
  int post_final=0;

  single[0]=atom.transfer_time()+ans.transfer_time();
  single[1]=nbor.time_nbor.total_seconds()+nbor.time_hybrid1.total_seconds()+
            nbor.time_hybrid2.total_seconds();
  single[2]=nbor.time_kernel.total_seconds();
  single[3]=time_pair.total_seconds();
  single[4]=atom.cast_time()+ans.cast_time();
  single[5]=gpu_overhead;
  single[6]=driver_overhead;
  single[7]=ans.cpu_idle_time();
  single[8]=nbor.bin_time();

  MPI_Finalized(&post_final);
  if (post_final) return;

  MPI_Reduce(single,times,9,MPI_DOUBLE,MPI_SUM,0,_comm_replica);

  double my_max_bytes=max_bytes+atom.max_gpu_bytes();
  double mpi_max_bytes;
  MPI_Reduce(&my_max_bytes,&mpi_max_bytes,1,MPI_DOUBLE,MPI_MAX,0,_comm_replica);
  double max_mb=mpi_max_bytes/(1024.0*1024.0);

  #ifdef USE_OPENCL
  // Workaround for timing issue on Intel OpenCL
  if (times[0] > 80e6) times[0]=0.0;
  if (times[3] > 80e6) times[3]=0.0;
  if (times[5] > 80e6) times[5]=0.0;
  #endif

  if (replica_me()==0)
    if (screen && (times[6] > 0.0)) {
      fprintf(screen,"\n\n-------------------------------------");
      fprintf(screen,"--------------------------------\n");
      fprintf(screen,"      Device Time Info (average): ");
      fprintf(screen,"\n-------------------------------------");
      fprintf(screen,"--------------------------------\n");

      if (time_device() && (times[3] > 0.0)) {
        if (times[0] > 0.0)
          fprintf(screen,"Data Transfer:   %.4f s.\n",times[0]/_replica_size);
        fprintf(screen,"Neighbor copy:   %.4f s.\n",times[1]/_replica_size);
        if (nbor.gpu_nbor() > 0.0)
          fprintf(screen,"Neighbor build:  %.4f s.\n",times[2]/_replica_size);
        else
          fprintf(screen,"Neighbor unpack: %.4f s.\n",times[2]/_replica_size);
        fprintf(screen,"Force calc:      %.4f s.\n",times[3]/_replica_size);
      }
      if (times[5] > 0.0)
        fprintf(screen,"Device Overhead: %.4f s.\n",times[5]/_replica_size);
      fprintf(screen,"Average split:   %.4f.\n",avg_split);
      fprintf(screen,"Lanes / atom:    %d.\n",threads_per_atom);
      fprintf(screen,"Vector width:    %d.\n", simd_size());
      fprintf(screen,"Max Mem / Proc:  %.2f MB.\n",max_mb);
      if (nbor.gpu_nbor()==2)
        fprintf(screen,"CPU Neighbor:    %.4f s.\n",times[8]/_replica_size);
      fprintf(screen,"CPU Cast/Pack:   %.4f s.\n",times[4]/_replica_size);
      fprintf(screen,"CPU Driver_Time: %.4f s.\n",times[6]/_replica_size);
      fprintf(screen,"CPU Idle_Time:   %.4f s.\n",times[7]/_replica_size);

      fprintf(screen,"-------------------------------------");
      fprintf(screen,"--------------------------------\n\n");
    }
}

template <class numtyp, class acctyp>
void DeviceT::output_kspace_times(UCL_Timer &time_in,
                                  UCL_Timer &time_out,
                                  UCL_Timer &time_map,
                                  UCL_Timer &time_rho,
                                  UCL_Timer &time_interp,
                                  Answer<numtyp,acctyp> &ans,
                                  const double max_bytes,
                                  const double cpu_time,
                                  const double idle_time, FILE *screen) {
  double single[9], times[9];

  single[0]=time_out.total_seconds();
  single[1]=time_in.total_seconds()+atom.transfer_time()+atom.cast_time();
  single[2]=time_map.total_seconds();
  single[3]=time_rho.total_seconds();
  single[4]=time_interp.total_seconds();
  single[5]=ans.transfer_time();
  single[6]=cpu_time;
  single[7]=idle_time;
  single[8]=ans.cast_time();

  MPI_Reduce(single,times,9,MPI_DOUBLE,MPI_SUM,0,_comm_replica);

  double my_max_bytes=max_bytes+atom.max_gpu_bytes();
  double mpi_max_bytes;
  MPI_Reduce(&my_max_bytes,&mpi_max_bytes,1,MPI_DOUBLE,MPI_MAX,0,_comm_replica);
  double max_mb=mpi_max_bytes/(1024.0*1024.0);
  #ifdef USE_OPENCL
  // Workaround for timing issue on Intel OpenCL
  if (times[3] > 80e6) times[3]=0.0;
  #endif


  if (replica_me()==0)
    if (screen && times[6]>0.0) {
      fprintf(screen,"\n\n-------------------------------------");
      fprintf(screen,"--------------------------------\n");
      fprintf(screen,"    Device Time Info (average) for kspace: ");
      fprintf(screen,"\n-------------------------------------");
      fprintf(screen,"--------------------------------\n");

      if (time_device() && times[3]>0) {
        fprintf(screen,"Data Out:        %.4f s.\n",times[0]/_replica_size);
        fprintf(screen,"Data In:         %.4f s.\n",times[1]/_replica_size);
        fprintf(screen,"Kernel (map):    %.4f s.\n",times[2]/_replica_size);
        fprintf(screen,"Kernel (rho):    %.4f s.\n",times[3]/_replica_size);
        fprintf(screen,"Force interp:    %.4f s.\n",times[4]/_replica_size);
        fprintf(screen,"Total rho:       %.4f s.\n",
                (times[0]+times[2]+times[3])/_replica_size);
        fprintf(screen,"Total interp:    %.4f s.\n",
                (times[1]+times[4])/_replica_size);
        fprintf(screen,"Force copy:      %.4f s.\n",times[5]/_replica_size);
        fprintf(screen,"Total:           %.4f s.\n",
                (times[0]+times[1]+times[2]+times[3]+times[4]+times[5])/
                _replica_size);
      }
      fprintf(screen,"CPU Poisson:     %.4f s.\n",times[6]/_replica_size);
      fprintf(screen,"CPU Data Cast:   %.4f s.\n",times[8]/_replica_size);
      fprintf(screen,"CPU Idle Time:   %.4f s.\n",times[7]/_replica_size);
      fprintf(screen,"Max Mem / Proc:  %.2f MB.\n",max_mb);

      fprintf(screen,"-------------------------------------");
      fprintf(screen,"--------------------------------\n\n");
    }
}

template <class numtyp, class acctyp>
void DeviceT::clear() {
  if (_init_count>0) {
    _long_range_precompute=0;
    _init_count--;
    if (_init_count==0) {
      atom.clear();
      _neighbor_shared.clear();
    }
  }
}

template <class numtyp, class acctyp>
void DeviceT::clear_device() {
  while (_init_count>0)
    clear();
  if (_compiled) {
    k_zero.clear();
    k_info.clear();
    delete dev_program;
    _compiled=false;
  }
  if (_device_init) {
    delete gpu;
    _device_init=false;
  }
}

template <class numtyp, class acctyp>
int DeviceT::compile_kernels() {
  int flag=0;

  if (_compiled)
          return flag;

  dev_program=new UCL_Program(*gpu);
  int success=dev_program->load_string(device,compile_string().c_str(),
                                       nullptr,stderr);
  if (success!=UCL_SUCCESS)
    return -6;
  k_zero.set_function(*dev_program,"kernel_zero");
  k_info.set_function(*dev_program,"kernel_info");
  _compiled=true;

  UCL_Vector<int,int> gpu_lib_data(19,*gpu,UCL_NOT_PINNED);
  k_info.set_size(1,1);
  k_info.run(&gpu_lib_data);
  gpu_lib_data.update_host(false);

  _ptx_arch=static_cast<double>(gpu_lib_data[0])/100.0;
  #if !(defined(USE_OPENCL) || defined(USE_HIP))
  if (_ptx_arch>gpu->arch() || floor(_ptx_arch)<floor(gpu->arch()))
    return -4;
  #endif

  _config_id=gpu_lib_data[1];

  if (sizeof(numtyp)==sizeof(float))
    _simd_size=std::max(gpu_lib_data[2],gpu->preferred_fp32_width());
  else
    _simd_size=std::max(gpu_lib_data[2],gpu->preferred_fp64_width());

  _num_mem_threads=gpu_lib_data[3];
  _shuffle_avail=gpu_lib_data[4];
  _fast_math=gpu_lib_data[5];

  if (_threads_per_atom<1)
    _threads_per_atom=gpu_lib_data[6];
  if (_threads_per_charge<1)
    _threads_per_charge=gpu_lib_data[7];
  if (_threads_per_three<1)
    _threads_per_three=gpu_lib_data[8];

  if (_block_pair == -1) {
    _block_pair=gpu_lib_data[9];
    _block_bio_pair=gpu_lib_data[10];
    _block_ellipse=gpu_lib_data[11];
  } else {
    _block_bio_pair=_block_pair;
    _block_ellipse=_block_pair;
  }
  _pppm_block=gpu_lib_data[12];
  _block_nbor_build=gpu_lib_data[13];
  _block_cell_2d=gpu_lib_data[14];
  _block_cell_id=gpu_lib_data[15];

  _max_shared_types=gpu_lib_data[16];
  _max_bio_shared_types=gpu_lib_data[17];
  _pppm_max_spline=gpu_lib_data[18];

  if (static_cast<size_t>(_block_pair) > gpu->group_size_dim(0) ||
      static_cast<size_t>(_block_bio_pair) > gpu->group_size_dim(0) ||
      static_cast<size_t>(_block_ellipse) > gpu->group_size_dim(0) ||
      static_cast<size_t>(_pppm_block) > gpu->group_size_dim(0) ||
      static_cast<size_t>(_block_nbor_build) > gpu->group_size_dim(0) ||
      static_cast<size_t>(_block_cell_2d) > gpu->group_size_dim(0) ||
      static_cast<size_t>(_block_cell_2d) > gpu->group_size_dim(1) ||
      static_cast<size_t>(_block_cell_id) > gpu->group_size_dim(0) ||
      static_cast<size_t>(_max_shared_types*_max_shared_types*sizeof(numtyp)*17 > gpu->slm_size()) ||
      static_cast<size_t>(_max_bio_shared_types*2*sizeof(numtyp) > gpu->slm_size()))
    return -13;

  if (_block_pair % _simd_size != 0 || _block_bio_pair % _simd_size != 0 ||
      _block_ellipse % _simd_size != 0 || _pppm_block % _simd_size != 0 ||
      _block_nbor_build % _simd_size != 0 ||
      _block_pair < _max_shared_types * _max_shared_types ||
      _block_bio_pair * 2 < _max_bio_shared_types ||
      _pppm_block < _pppm_max_spline * _pppm_max_spline)
    return -11;

  if (_threads_per_atom>_simd_size)
    _threads_per_atom=_simd_size;
  if (_simd_size%_threads_per_atom!=0)
    _threads_per_atom=1;
  if (_threads_per_atom & (_threads_per_atom - 1))
    _threads_per_atom=1;
  if (_threads_per_charge>_simd_size)
    _threads_per_charge=_simd_size;
  if (_simd_size%_threads_per_charge!=0)
    _threads_per_charge=1;
  if (_threads_per_charge & (_threads_per_charge - 1))
    _threads_per_charge=1;
  if (_threads_per_three>_simd_size)
    _threads_per_three=_simd_size;
  if (_simd_size%_threads_per_three!=0)
    _threads_per_three=1;
  if (_threads_per_three & (_threads_per_three - 1))
    _threads_per_three=1;

  return flag;
}

template <class numtyp, class acctyp>
double DeviceT::host_memory_usage() const {
  return atom.host_memory_usage()+4*sizeof(numtyp)+
         sizeof(Device<numtyp,acctyp>);
}

template class Device<PRECISION,ACC_PRECISION>;
Device<PRECISION,ACC_PRECISION> global_device;
}

using namespace LAMMPS_AL;

// check if a suitable GPU is present.
// for mixed and double precision GPU library compilation
// also the GPU needs to support double precision.
bool lmp_has_compatible_gpu_device()
{
  UCL_Device gpu;
  bool compatible_gpu = gpu.num_platforms() > 0;
  #if defined(_SINGLE_DOUBLE) || defined(_DOUBLE_DOUBLE)
  if (compatible_gpu && !gpu.double_precision(0))
    compatible_gpu = false;
  #endif
  return compatible_gpu;
}

std::string lmp_gpu_device_info()
{
  std::ostringstream out;
  UCL_Device gpu;
  if (gpu.num_platforms() > 0)
    gpu.print_all(out);
  return out.str();
}

int lmp_init_device(MPI_Comm world, MPI_Comm replica, const int ngpu,
                    const int first_gpu_id, const int gpu_mode,
                    const double particle_split, const int t_per_atom,
                    const double user_cell_size, char *opencl_config,
                    const int ocl_platform, char *device_type_flags,
                    const int block_pair) {
  return global_device.init_device(world,replica,ngpu,first_gpu_id,gpu_mode,
                                   particle_split,t_per_atom,user_cell_size,
                                   opencl_config,ocl_platform,
                                   device_type_flags,block_pair);
}

void lmp_clear_device() {
  global_device.clear_device();
}

double lmp_gpu_forces(double **f, double **tor, double *eatom, double **vatom,
                      double *virial, double &ecoul, int &error_flag) {
  return global_device.fix_gpu(f,tor,eatom,vatom,virial,ecoul,error_flag);
}

double lmp_gpu_update_bin_size(const double subx, const double suby,
                               const double subz, const int nlocal,
                               const double cut) {
  return global_device._neighbor_shared.update_cell_size(subx, suby,
                                                         subz, nlocal, cut);
}

bool lmp_gpu_config(const std::string &category, const std::string &setting)
{
  if (category == "api") {
#if defined(USE_OPENCL)
    return setting == "opencl";
#elif defined(USE_HIP)
    return setting == "hip";
#elif defined(USE_CUDA) || defined(USE_CUDART)
    return setting == "cuda";
#endif
    return false;
  }
  if (category == "precision") {
    if (setting == "single") {
#if defined(_SINGLE_SINGLE)
      return true;
#else
      return false;
#endif
    } else if (setting == "mixed") {
#if defined(_SINGLE_DOUBLE)
      return true;
#else
      return false;
#endif
    } else if (setting == "double") {
#if defined(_DOUBLE_DOUBLE)
      return true;
#else
      return false;
#endif
    } else return false;
  }
  return false;
}