1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
// **************************************************************************
// ellipsoid_nbor.cu
// -------------------
// W. Michael Brown (ORNL)
//
// Device code for Ellipsoid neighbor routines
//
// __________________________________________________________________________
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
// __________________________________________________________________________
//
// email : brownw@ornl.gov
// ***************************************************************************
#if defined(NV_KERNEL) || defined(USE_HIP)
#include "lal_preprocessor.h"
#ifndef _DOUBLE_DOUBLE
_texture( pos_tex,float4);
#else
_texture_2d( pos_tex,int4);
#endif
#else
#define pos_tex x_
#endif
// ---------------------------------------------------------------------------
// Unpack neighbors from dev_ij array into dev_nbor matrix for coalesced access
// -- Only unpack neighbors matching the specified inclusive range of forms
// -- Only unpack neighbors within cutoff
// ---------------------------------------------------------------------------
__kernel void kernel_nbor(const __global numtyp4 *restrict x_,
const __global numtyp2 *restrict cut_form,
const int ntypes,
__global int *dev_nbor,
const int nbor_pitch, const int start, const int inum,
const __global int *dev_ij,
const int form_low, const int form_high,
const int t_per_atom) {
// ii indexes the two interacting particles in gi
int ii=GLOBAL_ID_X+start;
if (ii<inum) {
int i=dev_ij[ii];
int nbor=ii+nbor_pitch;
int numj=dev_ij[nbor];
nbor+=nbor_pitch;
int nbor_end=nbor+fast_mul(numj,nbor_pitch);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
int iw=ix.w;
int itype=fast_mul(iw,ntypes);
int newj=0;
__global int *out_list=dev_nbor+2*nbor_pitch+ii*t_per_atom;
const int out_stride=nbor_pitch*t_per_atom-t_per_atom;
for ( ; nbor<nbor_end; nbor+=nbor_pitch) {
int sj=dev_ij[nbor];
int j = sj & NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
int jtype=jx.w;
int mtype=itype+jtype;
numtyp2 cf=cut_form[mtype];
if (cf.y>=form_low && cf.y<=form_high) {
// Compute r12;
numtyp rsq=jx.x-ix.x;
rsq*=rsq;
numtyp t=jx.y-ix.y;
rsq+=t*t;
t=jx.z-ix.z;
rsq+=t*t;
if (rsq<cf.x) {
*out_list=sj;
out_list++;
newj++;
if ((newj & (t_per_atom-1))==0)
out_list+=out_stride;
}
}
}
dev_nbor[ii+nbor_pitch]=newj;
}
}
// ---------------------------------------------------------------------------
// Unpack neighbors from dev_ij array into dev_nbor matrix for coalesced access
// -- Only unpack neighbors matching the specified inclusive range of forms
// -- Only unpack neighbors within cutoff
// -- Fast version of routine that uses shared memory for LJ constants
// ---------------------------------------------------------------------------
__kernel void kernel_nbor_fast(const __global numtyp4 *restrict x_,
const __global numtyp2 *restrict cut_form,
__global int *dev_nbor,
const int nbor_pitch, const int start,
const int inum,
const __global int *dev_ij,
const int form_low, const int form_high,
const int t_per_atom) {
int ii=THREAD_ID_X;
__local int form[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local numtyp cutsq[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
if (ii<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
cutsq[ii]=cut_form[ii].x;
form[ii]=cut_form[ii].y;
}
ii+=fast_mul((int)BLOCK_SIZE_X,(int)BLOCK_ID_X)+start;
__syncthreads();
if (ii<inum) {
int i=dev_ij[ii];
int nbor=ii+nbor_pitch;
int numj=dev_ij[nbor];
nbor+=nbor_pitch;
int nbor_end=nbor+fast_mul(numj,nbor_pitch);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
int iw=ix.w;
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
int newj=0;
__global int *out_list=dev_nbor+2*nbor_pitch+ii*t_per_atom;
const int out_stride=nbor_pitch*t_per_atom-t_per_atom;
for ( ; nbor<nbor_end; nbor+=nbor_pitch) {
int sj=dev_ij[nbor];
int j = sj & NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
int jtype=jx.w;
int mtype=itype+jtype;
if (form[mtype]>=form_low && form[mtype]<=form_high) {
// Compute r12;
numtyp rsq=jx.x-ix.x;
rsq*=rsq;
numtyp t=jx.y-ix.y;
rsq+=t*t;
t=jx.z-ix.z;
rsq+=t*t;
if (rsq<cutsq[mtype]) {
*out_list=sj;
out_list++;
newj++;
if ((newj & (t_per_atom-1))==0)
out_list+=out_stride;
}
}
}
dev_nbor[ii+nbor_pitch]=newj;
}
}
|