File: lal_gayberne_lj.cu

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (438 lines) | stat: -rw-r--r-- 13,569 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
// **************************************************************************
//                                gayberne_lj.cu
//                             -------------------
//                           W. Michael Brown (ORNL)
//
//  Device code for Gay-Berne - Lennard-Jones potential acceleration
//
// __________________________________________________________________________
//    This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
// __________________________________________________________________________
//
//    begin                :
//    email                : brownw@ornl.gov
// ***************************************************************************

#if defined(NV_KERNEL) || defined(USE_HIP)
#include "lal_ellipsoid_extra.h"
#endif

#if (SHUFFLE_AVAIL == 0)
#define local_allocate_store_ellipse_lj local_allocate_store_ellipse
#else
#define local_allocate_store_ellipse_lj()                                   \
    __local acctyp red_acc[7][BLOCK_ELLIPSE / SIMD_SIZE];
#endif

__kernel void k_gayberne_sphere_ellipsoid(const __global numtyp4 *restrict x_,
                                          const __global numtyp4 *restrict q,
                                          const __global numtyp4 *restrict shape,
                                          const __global numtyp4 *restrict well,
                                          const __global numtyp *restrict gum,
                                          const __global numtyp2 *restrict sig_eps,
                                          const int ntypes,
                                          const __global numtyp *restrict lshape,
                                          const __global int *dev_nbor,
                                          const int stride,
                                          __global acctyp4 *restrict ans,
                                          __global acctyp *restrict engv,
                                          __global int *restrict err_flag,
                                          const int eflag, const int vflag,
                                          const int start, const int inum,
                                          const int t_per_atom) {
  int tid, ii, offset;
  atom_info(t_per_atom,ii,tid,offset);
  ii+=start;

  __local numtyp sp_lj[4];
  int n_stride;
  local_allocate_store_ellipse_lj();

  sp_lj[0]=gum[3];
  sp_lj[1]=gum[4];
  sp_lj[2]=gum[5];
  sp_lj[3]=gum[6];

  acctyp4 f;
  f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
  acctyp energy, virial[6];
  if (EVFLAG) {
    energy=(acctyp)0;
    for (int i=0; i<6; i++) virial[i]=(acctyp)0;
  }

  if (ii<inum) {
    int nbor, nbor_end;
    int i, numj;
    nbor_info_p(dev_nbor,stride,t_per_atom,ii,offset,i,numj,
                n_stride,nbor_end,nbor);

    numtyp4 ix; fetch4(ix,i,pos_tex);
    int itype=ix.w;

    numtyp oner=shape[itype].x;
    numtyp one_well=well[itype].x;

    numtyp factor_lj;
    for ( ; nbor<nbor_end; nbor+=n_stride) {

      int j=dev_nbor[nbor];
      factor_lj = sp_lj[sbmask(j)];
      j &= NEIGHMASK;

      numtyp4 jx; fetch4(jx,j,pos_tex);
      int jtype=jx.w;

      // Compute r12
      numtyp r12[3];
      r12[0] = jx.x-ix.x;
      r12[1] = jx.y-ix.y;
      r12[2] = jx.z-ix.z;
      numtyp ir = gpu_dot3(r12,r12);

      ir = ucl_rsqrt(ir);
      numtyp r = ucl_recip(ir);

      numtyp r12hat[3];
      r12hat[0]=r12[0]*ir;
      r12hat[1]=r12[1]*ir;
      r12hat[2]=r12[2]*ir;

      numtyp a2[9];
      gpu_quat_to_mat_trans(q,j,a2);

      numtyp u_r, dUr[3], eta;
      { // Compute U_r, dUr, eta, and teta
        // Compute g12
        numtyp g12[9];
        {
          {
            numtyp g2[9];
            gpu_diag_times3(shape[jtype],a2,g12);
            gpu_transpose_times3(a2,g12,g2);
            g12[0]=g2[0]+oner;
            g12[4]=g2[4]+oner;
            g12[8]=g2[8]+oner;
            g12[1]=g2[1];
            g12[2]=g2[2];
            g12[3]=g2[3];
            g12[5]=g2[5];
            g12[6]=g2[6];
            g12[7]=g2[7];
          }

          { // Compute U_r and dUr

            // Compute kappa
            numtyp kappa[3];
            gpu_mldivide3(g12,r12,kappa,err_flag);

            // -- kappa is now / r
            kappa[0]*=ir;
            kappa[1]*=ir;
            kappa[2]*=ir;

            // energy

            // compute u_r and dUr
            numtyp uslj_rsq;
            {
              // Compute distance of closest approach
              numtyp h12, sigma12;
              sigma12 = gpu_dot3(r12hat,kappa);
              sigma12 = ucl_rsqrt((numtyp)0.5*sigma12);
              h12 = r-sigma12;

              // -- kappa is now ok
              kappa[0]*=r;
              kappa[1]*=r;
              kappa[2]*=r;

              int mtype=fast_mul(ntypes,itype)+jtype;
              numtyp sigma = sig_eps[mtype].x;
              numtyp epsilon = sig_eps[mtype].y;
              numtyp varrho = sigma/(h12+gum[0]*sigma);
              numtyp varrho6 = varrho*varrho*varrho;
              varrho6*=varrho6;
              numtyp varrho12 = varrho6*varrho6;
              u_r = (numtyp)4.0*epsilon*(varrho12-varrho6);

              numtyp temp1 = ((numtyp)2.0*varrho12*varrho-varrho6*varrho)/sigma;
              temp1 = temp1*(numtyp)24.0*epsilon;
              uslj_rsq = temp1*sigma12*sigma12*sigma12*(numtyp)0.5;
              numtyp temp2 = gpu_dot3(kappa,r12hat);
              uslj_rsq = uslj_rsq*ir*ir;

              dUr[0] = temp1*r12hat[0]+uslj_rsq*(kappa[0]-temp2*r12hat[0]);
              dUr[1] = temp1*r12hat[1]+uslj_rsq*(kappa[1]-temp2*r12hat[1]);
              dUr[2] = temp1*r12hat[2]+uslj_rsq*(kappa[2]-temp2*r12hat[2]);
            }
          }
        }

        // Compute eta
        {
          eta = (numtyp)2.0*lshape[itype]*lshape[jtype];
          numtyp det_g12 = gpu_det3(g12);
          eta = ucl_powr(eta/det_g12,gum[1]);
        }
      }

      numtyp chi, dchi[3];
      { // Compute chi and dchi

        // Compute b12
        numtyp b12[9];
        {
          numtyp b2[9];
          gpu_diag_times3(well[jtype],a2,b12);
          gpu_transpose_times3(a2,b12,b2);
          b12[0]=b2[0]+one_well;
          b12[4]=b2[4]+one_well;
          b12[8]=b2[8]+one_well;
          b12[1]=b2[1];
          b12[2]=b2[2];
          b12[3]=b2[3];
          b12[5]=b2[5];
          b12[6]=b2[6];
          b12[7]=b2[7];
        }

        // compute chi_12
        numtyp iota[3];
        gpu_mldivide3(b12,r12,iota,err_flag);
        // -- iota is now iota/r
        iota[0]*=ir;
        iota[1]*=ir;
        iota[2]*=ir;
        chi = gpu_dot3(r12hat,iota);
        chi = ucl_powr(chi*(numtyp)2.0,gum[2]);

        // -- iota is now ok
        iota[0]*=r;
        iota[1]*=r;
        iota[2]*=r;

        numtyp temp1 = gpu_dot3(iota,r12hat);
        numtyp temp2 = (numtyp)-4.0*ir*ir*gum[2]*ucl_powr(chi,(gum[2]-(numtyp)1.0)/
                                                     gum[2]);
        dchi[0] = temp2*(iota[0]-temp1*r12hat[0]);
        dchi[1] = temp2*(iota[1]-temp1*r12hat[1]);
        dchi[2] = temp2*(iota[2]-temp1*r12hat[2]);
      }

      numtyp temp2 = factor_lj*eta*chi;
      if (EVFLAG && eflag)
        energy+=u_r*temp2;
      numtyp temp1 = -eta*u_r*factor_lj;
      if (EVFLAG && vflag) {
        r12[0]*=-1;
        r12[1]*=-1;
        r12[2]*=-1;
        numtyp ft=temp1*dchi[0]-temp2*dUr[0];
        f.x+=ft;
        virial[0]+=r12[0]*ft;
        ft=temp1*dchi[1]-temp2*dUr[1];
        f.y+=ft;
        virial[1]+=r12[1]*ft;
        virial[3]+=r12[0]*ft;
        ft=temp1*dchi[2]-temp2*dUr[2];
        f.z+=ft;
        virial[2]+=r12[2]*ft;
        virial[4]+=r12[0]*ft;
        virial[5]+=r12[1]*ft;
      } else {
        f.x+=temp1*dchi[0]-temp2*dUr[0];
        f.y+=temp1*dchi[1]-temp2*dUr[1];
        f.z+=temp1*dchi[2]-temp2*dUr[2];
      }
    } // for nbor
  } // if ii
  store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
                ans,engv);
}

__kernel void k_gayberne_lj(const __global numtyp4 *restrict x_,
                            const __global numtyp4 *restrict lj1,
                            const __global numtyp4 *restrict lj3,
                            const int lj_types,
                            const __global numtyp *restrict gum,
                            const int stride,
                            const __global int *dev_ij,
                            __global acctyp4 *restrict ans,
                            __global acctyp *restrict engv,
                            __global int *restrict err_flag,
                            const int eflag, const int vflag, const int start,
                            const int inum, const int t_per_atom) {
  int tid, ii, offset;
  atom_info(t_per_atom,ii,tid,offset);
  ii+=start;

  __local numtyp sp_lj[4];
  int n_stride;
  local_allocate_store_ellipse();

  sp_lj[0]=gum[3];
  sp_lj[1]=gum[4];
  sp_lj[2]=gum[5];
  sp_lj[3]=gum[6];

  acctyp4 f;
  f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
  acctyp energy, virial[6];
  if (EVFLAG) {
    energy=(acctyp)0;
    for (int i=0; i<6; i++) virial[i]=(acctyp)0;
  }

  if (ii<inum) {
    int nbor, nbor_end;
    int i, numj;
    nbor_info_e_ss(dev_ij,stride,t_per_atom,ii,offset,i,numj,
                   n_stride,nbor_end,nbor);

    numtyp4 ix; fetch4(ix,i,pos_tex);
    int itype=ix.w;

    numtyp factor_lj;
    for ( ; nbor<nbor_end; nbor+=n_stride) {

      int j=dev_ij[nbor];
      factor_lj = sp_lj[sbmask(j)];
      j &= NEIGHMASK;

      numtyp4 jx; fetch4(jx,j,pos_tex);
      int jtype=jx.w;

      // Compute r12
      numtyp delx = ix.x-jx.x;
      numtyp dely = ix.y-jx.y;
      numtyp delz = ix.z-jx.z;
      numtyp r2inv = delx*delx+dely*dely+delz*delz;

      int ii=itype*lj_types+jtype;
      if (r2inv<lj1[ii].z && lj1[ii].w==SPHERE_SPHERE) {
        r2inv=ucl_recip(r2inv);
        numtyp r6inv = r2inv*r2inv*r2inv;
        numtyp force = r2inv*r6inv*(lj1[ii].x*r6inv-lj1[ii].y);
        force*=factor_lj;

        f.x+=delx*force;
        f.y+=dely*force;
        f.z+=delz*force;

        if (EVFLAG && eflag) {
          numtyp e=r6inv*(lj3[ii].x*r6inv-lj3[ii].y);
          energy+=factor_lj*(e-lj3[ii].z);
        }
        if (EVFLAG && vflag) {
          virial[0] += delx*delx*force;
          virial[1] += dely*dely*force;
          virial[2] += delz*delz*force;
          virial[3] += delx*dely*force;
          virial[4] += delx*delz*force;
          virial[5] += dely*delz*force;
        }
      }

    } // for nbor
  } // if ii
  acc_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
              ans,engv);
}

__kernel void k_gayberne_lj_fast(const __global numtyp4 *restrict x_,
                                 const __global numtyp4 *restrict lj1_in,
                                 const __global numtyp4 *restrict lj3_in,
                                 const __global numtyp *restrict gum,
                                 const int stride,
                                 const __global int *dev_ij,
                                 __global acctyp4 *restrict ans,
                                 __global acctyp *restrict engv,
                                 __global int *restrict err_flag,
                                 const int eflag, const int vflag,
                                 const int start, const int inum,
                                 const int t_per_atom) {
  int tid, ii, offset;
  atom_info(t_per_atom,ii,tid,offset);
  ii+=start;

  __local numtyp sp_lj[4];
  __local numtyp4 lj1[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
  __local numtyp4 lj3[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
  int n_stride;
  local_allocate_store_ellipse();

  if (tid<4)
    sp_lj[tid]=gum[tid+3];
  if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
    lj1[tid]=lj1_in[tid];
    if (EVFLAG && eflag)
      lj3[tid]=lj3_in[tid];
  }

  acctyp4 f;
  f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
  acctyp energy, virial[6];
  if (EVFLAG) {
    energy=(acctyp)0;
    for (int i=0; i<6; i++) virial[i]=(acctyp)0;
  }

  __syncthreads();

  if (ii<inum) {
    int nbor, nbor_end;
    int i, numj;
    nbor_info_e_ss(dev_ij,stride,t_per_atom,ii,offset,i,numj,
                   n_stride,nbor_end,nbor);

    numtyp4 ix; fetch4(ix,i,pos_tex);
    int iw=ix.w;
    int itype=fast_mul((int)MAX_SHARED_TYPES,iw);

    numtyp factor_lj;
    for ( ; nbor<nbor_end; nbor+=n_stride) {

      int j=dev_ij[nbor];
      factor_lj = sp_lj[sbmask(j)];
      j &= NEIGHMASK;

      numtyp4 jx; fetch4(jx,j,pos_tex);
      int mtype=itype+jx.w;

      // Compute r12
      numtyp delx = ix.x-jx.x;
      numtyp dely = ix.y-jx.y;
      numtyp delz = ix.z-jx.z;
      numtyp r2inv = delx*delx+dely*dely+delz*delz;

      if (r2inv<lj1[mtype].z && lj1[mtype].w==SPHERE_SPHERE) {
        r2inv=ucl_recip(r2inv);
        numtyp r6inv = r2inv*r2inv*r2inv;
        numtyp force = factor_lj*r2inv*r6inv*(lj1[mtype].x*r6inv-lj1[mtype].y);

        f.x+=delx*force;
        f.y+=dely*force;
        f.z+=delz*force;

        if (EVFLAG && eflag) {
          numtyp e=r6inv*(lj3[mtype].x*r6inv-lj3[mtype].y);
          energy+=factor_lj*(e-lj3[mtype].z);
        }
        if (EVFLAG && vflag) {
          virial[0] += delx*delx*force;
          virial[1] += dely*dely*force;
          virial[2] += delz*delz*force;
          virial[3] += delx*dely*force;
          virial[4] += delx*delz*force;
          virial[5] += dely*delz*force;
        }
      }

    } // for nbor
  } // if ii
  acc_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
              ans,engv);
}