1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
// **************************************************************************
// lj_sdk_long.cu
// -------------------
// W. Michael Brown (ORNL)
//
// Device code for acceleration of the lj/sdk/coul/long pair style
//
// __________________________________________________________________________
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
// __________________________________________________________________________
//
// begin :
// email : brownw@ornl.gov
// ***************************************************************************
#if defined(NV_KERNEL) || defined(USE_HIP)
#include "lal_aux_fun1.h"
#ifndef _DOUBLE_DOUBLE
_texture( pos_tex,float4);
_texture( q_tex,float);
#else
_texture_2d( pos_tex,int4);
_texture( q_tex,int2);
#endif
#else
#define pos_tex x_
#define q_tex q_
#endif
__kernel void k_lj_sdk_long(const __global numtyp4 *restrict x_,
const __global numtyp4 *restrict lj1,
const __global numtyp4 *restrict lj3,
const int lj_types,
const __global numtyp *restrict sp_lj_in,
const __global int *dev_nbor,
const __global int *dev_packed,
__global acctyp4 *restrict ans,
__global acctyp *restrict engv,
const int eflag, const int vflag, const int inum,
const int nbor_pitch,
const __global numtyp *restrict q_ ,
const numtyp cut_coulsq, const numtyp qqrd2e,
const numtyp g_ewald, const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
__local numtyp sp_lj[8];
int n_stride;
local_allocate_store_charge();
sp_lj[0]=sp_lj_in[0];
sp_lj[1]=sp_lj_in[1];
sp_lj[2]=sp_lj_in[2];
sp_lj[3]=sp_lj_in[3];
sp_lj[4]=sp_lj_in[4];
sp_lj[5]=sp_lj_in[5];
sp_lj[6]=sp_lj_in[6];
sp_lj[7]=sp_lj_in[7];
acctyp4 f;
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
acctyp energy, e_coul, virial[6];
if (EVFLAG) {
energy=(acctyp)0;
e_coul=(acctyp)0;
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
}
if (ii<inum) {
int nbor, nbor_end;
int i, numj;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,nbor_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
numtyp qtmp; fetch(qtmp,i,q_tex);
int itype=ix.w;
for ( ; nbor<nbor_end; nbor+=n_stride) {
int j=dev_packed[nbor];
numtyp factor_lj, factor_coul;
factor_lj = sp_lj[sbmask(j)];
factor_coul = (numtyp)1.0-sp_lj[sbmask(j)+4];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
int jtype=jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
int mtype=itype*lj_types+jtype;
if (rsq<lj1[mtype].x) {
numtyp forcecoul, force_lj, force, inv1, inv2, prefactor, _erfc;
numtyp r2inv=ucl_recip(rsq);
if (rsq < lj1[mtype].y) {
if (lj3[mtype].x == (numtyp)2) {
inv1=r2inv*r2inv;
inv2=inv1*inv1;
} else if (lj3[mtype].x == (numtyp)1) {
inv2=r2inv*ucl_rsqrt(rsq);
inv1=inv2*inv2;
} else {
inv1=r2inv*r2inv*r2inv;
inv2=inv1;
}
force_lj = factor_lj*inv1*(lj1[mtype].z*inv2-lj1[mtype].w);
} else
force_lj = (numtyp)0.0;
if (rsq < cut_coulsq) {
numtyp r = ucl_rsqrt(r2inv);
numtyp grij = g_ewald * r;
numtyp expm2 = ucl_exp(-grij*grij);
numtyp t = ucl_recip((numtyp)1.0 + EWALD_P*grij);
_erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
fetch(prefactor,j,q_tex);
prefactor *= qqrd2e * qtmp/r;
forcecoul = prefactor * (_erfc + EWALD_F*grij*expm2-factor_coul);
} else
forcecoul = (numtyp)0.0;
force = (force_lj + forcecoul) * r2inv;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (EVFLAG && eflag) {
if (rsq < cut_coulsq)
e_coul += prefactor*(_erfc-factor_coul);
if (rsq < lj1[mtype].y) {
energy += factor_lj*inv1*(lj3[mtype].y*inv2-lj3[mtype].z)-
lj3[mtype].w;
}
}
if (EVFLAG && vflag) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
} // if ii
store_answers_q(f,energy,e_coul,virial,ii,inum,tid,t_per_atom,offset,eflag,
vflag,ans,engv);
}
__kernel void k_lj_sdk_long_fast(const __global numtyp4 *restrict x_,
const __global numtyp4 *restrict lj1_in,
const __global numtyp4 *restrict lj3_in,
const __global numtyp *restrict sp_lj_in,
const __global int *dev_nbor,
const __global int *dev_packed,
__global acctyp4 *restrict ans,
__global acctyp *restrict engv,
const int eflag, const int vflag,
const int inum, const int nbor_pitch,
const __global numtyp *restrict q_,
const numtyp cut_coulsq, const numtyp qqrd2e,
const numtyp g_ewald, const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
__local numtyp4 lj1[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local numtyp4 lj3[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local numtyp sp_lj[8];
int n_stride;
local_allocate_store_charge();
if (tid<8)
sp_lj[tid]=sp_lj_in[tid];
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
lj1[tid]=lj1_in[tid];
lj3[tid]=lj3_in[tid];
}
acctyp4 f;
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
acctyp energy, e_coul, virial[6];
if (EVFLAG) {
energy=(acctyp)0;
e_coul=(acctyp)0;
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
}
__syncthreads();
if (ii<inum) {
int nbor, nbor_end;
int i, numj;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,nbor_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
numtyp qtmp; fetch(qtmp,i,q_tex);
int iw=ix.w;
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
for ( ; nbor<nbor_end; nbor+=n_stride) {
int j=dev_packed[nbor];
numtyp factor_lj, factor_coul;
factor_lj = sp_lj[sbmask(j)];
factor_coul = (numtyp)1.0-sp_lj[sbmask(j)+4];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
int mtype=itype+jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
if (rsq<lj1[mtype].x) {
numtyp forcecoul, force_lj, force, inv1, inv2, prefactor, _erfc;
numtyp r2inv=ucl_recip(rsq);
if (rsq < lj1[mtype].y) {
if (lj3[mtype].x == (numtyp)2) {
inv1=r2inv*r2inv;
inv2=inv1*inv1;
} else if (lj3[mtype].x == (numtyp)1) {
inv2=r2inv*ucl_rsqrt(rsq);
inv1=inv2*inv2;
} else {
inv1=r2inv*r2inv*r2inv;
inv2=inv1;
}
force_lj = factor_lj*inv1*(lj1[mtype].z*inv2-lj1[mtype].w);
} else
force_lj = (numtyp)0.0;
if (rsq < cut_coulsq) {
numtyp r = ucl_rsqrt(r2inv);
numtyp grij = g_ewald * r;
numtyp expm2 = ucl_exp(-grij*grij);
numtyp t = ucl_recip((numtyp)1.0 + EWALD_P*grij);
_erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
fetch(prefactor,j,q_tex);
prefactor *= qqrd2e * qtmp/r;
forcecoul = prefactor * (_erfc + EWALD_F*grij*expm2-factor_coul);
} else
forcecoul = (numtyp)0.0;
force = (force_lj + forcecoul) * r2inv;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (EVFLAG && eflag) {
if (rsq < cut_coulsq)
e_coul += prefactor*(_erfc-factor_coul);
if (rsq < lj1[mtype].y) {
energy += factor_lj*inv1*(lj3[mtype].y*inv2-lj3[mtype].z)-
lj3[mtype].w;
}
}
if (EVFLAG && vflag) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
} // if ii
store_answers_q(f,energy,e_coul,virial,ii,inum,tid,t_per_atom,offset,eflag,
vflag,ans,engv);
}
|