1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
|
/***************************************************************************
neighbor.cpp
-------------------
Nitin Dhamankar (Intel)
W. Michael Brown (ORNL)
Peng Wang (Nvidia)
Class for handling neighbor lists
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin :
email : brownw@ornl.gov, penwang@nvidia.com
***************************************************************************/
#include "lal_precision.h"
#include "lal_neighbor.h"
#include "lal_device.h"
#include <cmath>
using namespace LAMMPS_AL;
int Neighbor::bytes_per_atom(const int max_nbors) const {
if (_gpu_nbor==1)
return (max_nbors+2)*sizeof(int);
else if (_gpu_nbor==2)
return (max_nbors+3)*sizeof(int);
else if (_use_packing)
return ((max_nbors+2)*2)*sizeof(int);
else
return (max_nbors+3)*sizeof(int);
}
bool Neighbor::init(NeighborShared *shared, const int inum,
const int host_inum, const int max_nbors,
const int maxspecial, UCL_Device &devi, const int gpu_nbor,
const int gpu_host, const bool pre_cut,
const int block_cell_2d, const int block_cell_id,
const int block_nbor_build, const int threads_per_atom,
const int simd_size, const bool time_device,
const std::string &compile_flags, const bool ilist_map) {
clear();
_ilist_map = ilist_map;
_threads_per_atom=threads_per_atom;
_block_cell_2d=block_cell_2d;
_block_cell_id=block_cell_id;
_block_nbor_build=block_nbor_build;
_simd_size=simd_size;
#ifndef LAL_USE_OLD_NEIGHBOR
if (_block_nbor_build < _simd_size)
_block_nbor_build = _simd_size;
#endif
_shared=shared;
dev=&devi;
_gpu_nbor=gpu_nbor;
_time_device=time_device;
if (gpu_host==0)
_gpu_host=false;
else if (gpu_host==1)
_gpu_host=true;
else
// Not yet implemented
assert(0==1);
if (pre_cut || gpu_nbor==0)
_alloc_packed=true;
else
_alloc_packed=false;
if (pre_cut)
_packed_permissions=UCL_READ_WRITE;
else
_packed_permissions=UCL_READ_ONLY;
bool success=true;
// Initialize timers for the selected GPU
_nbor_time_avail=false;
time_nbor.init(*dev);
time_kernel.init(*dev);
time_hybrid1.init(*dev);
time_hybrid2.init(*dev);
time_transpose.init(*dev);
time_nbor.zero();
time_kernel.zero();
time_hybrid1.zero();
time_hybrid2.zero();
time_transpose.zero();
_max_atoms=static_cast<int>(static_cast<double>(inum)*1.10);
if (_max_atoms==0)
_max_atoms=1000;
_max_host=static_cast<int>(static_cast<double>(host_inum)*1.10);
_max_neighbor_factor=1.0e-2*max_nbors*1.1;
if (_gpu_nbor != 1)
_max_nbors=0;
else
_max_nbors=300;
if (_old_max_nbors) _max_nbors=_old_max_nbors;
_maxspecial=maxspecial;
if (gpu_nbor==0)
_maxspecial=0;
if (gpu_nbor==0)
success=success && (host_packed.alloc(2*IJ_SIZE,*dev,
UCL_WRITE_ONLY)==UCL_SUCCESS);
alloc(success);
if (!success)
return false;
if (_use_packing==false) {
#ifndef LAL_USE_OLD_NEIGHBOR
_shared->compile_kernels(devi, gpu_nbor, compile_flags+
" -DMAX_SUBGROUPS_PER_BLOCK="+toa(_block_nbor_build/_simd_size));
#else
_shared->compile_kernels(devi,gpu_nbor,compile_flags);
#endif
#ifndef LAL_USE_OLD_NEIGHBOR
if (_gpu_nbor) {
#if defined(USE_OPENCL) && (defined(CL_VERSION_2_1) || \
defined(CL_VERSION_3_0))
if (dev->has_subgroup_support()) {
int simd_size_kernel=
_shared->k_build_nbor.max_subgroup_size(_block_nbor_build);
if (_simd_size != simd_size_kernel) {
_simd_size = simd_size_kernel;
if (_block_nbor_build < _simd_size)
_block_nbor_build = _simd_size;
_shared->clear();
_shared->compile_kernels(devi, gpu_nbor, compile_flags+
" -DMAX_SUBGROUPS_PER_BLOCK="+toa(_block_nbor_build/_simd_size));
}
}
#endif
_bin_stencil.get_global(*(_shared->build_program),"bin_stencil");
}
#endif
}
_max_block_nbor_build=_block_nbor_build;
return success;
}
void Neighbor::alloc(bool &success) {
dev_nbor.clear();
host_acc.clear();
int nt=_max_atoms+_max_host;
if (_max_nbors)
_max_nbors = ((_max_nbors-1)/_threads_per_atom+1)*_threads_per_atom;
if (_use_packing==false || _gpu_nbor>0) {
if (_max_nbors)
success=success &&
(dev_nbor.alloc((_max_nbors+2)*_max_atoms,*dev)==UCL_SUCCESS);
} else
success=success && (dev_nbor.alloc(3*_max_atoms,*dev,
UCL_READ_ONLY)==UCL_SUCCESS);
if (_gpu_nbor != 2 || _max_host>0)
success=success && (host_acc.alloc(nt*2,*dev,
UCL_READ_WRITE)==UCL_SUCCESS);
_c_bytes=dev_nbor.row_bytes();
if (_alloc_packed) {
if (_use_packing==false) {
dev_packed_begin.clear();
success=success && (dev_packed_begin.alloc(_max_atoms,*dev,
_packed_permissions)==UCL_SUCCESS);
}
dev_packed.clear();
if (_max_nbors)
success=success && (dev_packed.alloc((_max_nbors+2)*_max_atoms,*dev,
_packed_permissions)==UCL_SUCCESS);
if (_ilist_map) {
if (_gpu_nbor) {
if (three_ilist.numel()==0)
success=success && (three_ilist.alloc(16,*dev,UCL_READ_WRITE,
UCL_READ_ONLY)==UCL_SUCCESS);
} else {
three_ilist.clear();
success=success && (three_ilist.alloc(_max_atoms,*dev,UCL_READ_WRITE,
UCL_READ_ONLY)==UCL_SUCCESS);
}
_c_bytes+=three_ilist.row_bytes();
}
_c_bytes+=dev_packed.row_bytes()+dev_packed_begin.row_bytes();
}
if (_max_host>0) {
nbor_host.clear();
dev_numj_host.clear();
host_ilist.clear();
host_jlist.clear();
if (_max_nbors)
success=(nbor_host.alloc(_max_nbors*_max_host,*dev,UCL_READ_WRITE,
UCL_READ_WRITE)==UCL_SUCCESS) && success;
success=success && (dev_numj_host.alloc(_max_host,*dev,
UCL_READ_WRITE)==UCL_SUCCESS);
success=success && (host_ilist.alloc(nt,*dev,UCL_NOT_PINNED)==UCL_SUCCESS);
if (!success)
return;
for (int i=0; i<nt; i++)
host_ilist[i]=i;
success=success && (host_jlist.alloc(_max_host,*dev,
UCL_NOT_PINNED)==UCL_SUCCESS);
if (!success)
return;
int *ptr=nbor_host.host.begin();
for (int i=0; i<_max_host; i++) {
host_jlist[i]=ptr;
ptr+=_max_nbors;
}
_c_bytes+=nbor_host.device.row_bytes()+dev_numj_host.row_bytes();
} else if (dev_nbor.numel()) {
if (!success) return;
// Some OpenCL implementations return errors for nullptr pointers as args
nbor_host.device.view(dev_nbor);
dev_numj_host.view(dev_nbor);
}
if (_maxspecial>0) {
dev_nspecial.clear();
dev_special.clear();
dev_special_t.clear();
int at=_max_atoms+_max_host;
success=success && (dev_nspecial.alloc(3*at,*dev,
UCL_READ_ONLY)==UCL_SUCCESS);
success=success && (dev_special.alloc(_maxspecial*at,*dev,
UCL_READ_WRITE)==UCL_SUCCESS);
success=success && (dev_special_t.alloc(_maxspecial*at,*dev,
UCL_READ_ONLY)==UCL_SUCCESS);
_gpu_bytes+=dev_nspecial.row_bytes()+dev_special.row_bytes()+
dev_special_t.row_bytes();
}
_allocated=true;
}
void Neighbor::clear() {
_gpu_bytes=0.0;
_cell_bytes=0.0;
_c_bytes=0.0;
_bin_time=0.0;
if (_ncells>0) {
_ncells=0;
cell_counts.clear();
#ifndef LAL_USE_OLD_NEIGHBOR
cell_subgroup_counts.clear();
subgroup2cell.clear();
_host_bin_stencil.clear();
_bin_stencil.clear();
#endif
if (_gpu_nbor==2)
delete [] cell_iter;
}
if (_allocated) {
_allocated=false;
_nbor_time_avail=false;
_old_max_nbors=_max_nbors;
_max_nbors=0;
host_packed.clear();
host_acc.clear();
three_ilist.clear();
dev_nbor.clear();
nbor_host.clear();
dev_packed.clear();
dev_packed_begin.clear();
dev_numj_host.clear();
host_ilist.clear();
host_jlist.clear();
dev_nspecial.clear();
dev_special.clear();
dev_special_t.clear();
time_kernel.clear();
time_nbor.clear();
time_hybrid1.clear();
time_hybrid2.clear();
time_transpose.clear();
}
}
double Neighbor::host_memory_usage() const {
if (_gpu_nbor>0) {
if (_gpu_host)
return nbor_host.device.row_bytes()*nbor_host.rows()+
host_ilist.row_bytes()+host_jlist.row_bytes();
else
return 0;
} else
return host_packed.row_bytes()*host_packed.rows()+host_acc.row_bytes()+
sizeof(Neighbor);
}
void Neighbor::get_host(const int inum, int *ilist, int *numj,
int **firstneigh, const int block_size) {
_nbor_time_avail=true;
time_nbor.start();
UCL_H_Vec<int> ilist_view;
ilist_view.view(ilist,inum,*dev);
ucl_copy(dev_nbor,ilist_view,false);
#ifndef GERYON_OCL_FLUSH
dev_nbor.flush();
#endif
int copy_count=0;
int ij_count=0;
int acc_count=0;
int dev_count=0;
int *h_ptr=host_packed.begin();
_nbor_pitch=inum;
for (int ii=0; ii<inum; ii++) {
int i=ilist[ii];
int nj=numj[i];
host_acc[ii]=nj;
host_acc[ii+inum]=acc_count;
acc_count+=nj;
int *jlist=firstneigh[i];
for (int jj=0; jj<nj; jj++) {
*h_ptr=jlist[jj];
h_ptr++;
ij_count++;
if (ij_count==IJ_SIZE) {
dev_nbor.sync();
_host_offset.view_offset(IJ_SIZE*(copy_count%2),host_packed,IJ_SIZE);
_nbor_offset.view_offset(dev_count,dev_packed,IJ_SIZE);
ucl_copy(_nbor_offset,_host_offset,true);
#ifndef GERYON_OCL_FLUSH
_nbor_offset.flush();
#endif
copy_count++;
ij_count=0;
dev_count+=IJ_SIZE;
h_ptr=host_packed.begin()+(IJ_SIZE*(copy_count%2));
}
}
}
if (ij_count!=0) {
dev_nbor.sync();
_host_offset.view_offset(IJ_SIZE*(copy_count%2),host_packed,ij_count);
_nbor_offset.view_offset(dev_count,dev_packed,ij_count);
ucl_copy(_nbor_offset,_host_offset,true);
}
_acc_view.view_offset(inum,dev_nbor,inum*2);
if (_use_packing)
ucl_copy(_acc_view,host_acc,inum*2,true);
else {
ucl_copy(_acc_view,host_acc,inum,true);
_host_offset.view_offset(inum,host_acc,inum);
ucl_copy(dev_packed_begin,_host_offset,inum,true);
}
if (_ilist_map && _gpu_nbor==0) {
#ifndef GERYON_OCL_FLUSH
_acc_view.flush();
#endif
for (int ii=0; ii<inum; ii++) {
int i=ilist[ii];
three_ilist[i] = ii;
}
three_ilist.update_device(inum,true);
}
time_nbor.stop();
if (_use_packing==false) {
time_kernel.start();
int GX=static_cast<int>(ceil(static_cast<double>(inum)*_threads_per_atom/
block_size));
_shared->k_nbor.set_size(GX,block_size);
_shared->k_nbor.run(&dev_nbor, &dev_packed, &dev_packed_begin, &inum,
&_threads_per_atom);
time_kernel.stop();
}
}
// This is the same as get host, but the requirement that ilist[i]=i and
// inum=nlocal is forced to be true to allow direct indexing of neighbors of
// neighbors
void Neighbor::get_host3(const int inum, const int nlist, int *ilist, int *numj,
int **firstneigh, const int block_size) {
_nbor_time_avail=true;
time_nbor.start();
UCL_H_Vec<int> ilist_view;
ilist_view.view(ilist,inum,*dev);
ucl_copy(dev_nbor,ilist_view,false);
int copy_count=0;
int ij_count=0;
int acc_count=0;
int dev_count=0;
int *h_ptr=host_packed.begin();
_nbor_pitch=inum;
if (nlist!=inum)
host_acc.zero(inum);
for (int ii=0; ii<nlist; ii++) {
int i=ilist[ii];
int nj=numj[i];
host_acc[i]=nj;
host_acc[i+inum]=acc_count;
acc_count+=nj;
}
for (int i=0; i<inum; i++) {
int nj=host_acc[i];
int *jlist=firstneigh[i];
for (int jj=0; jj<nj; jj++) {
*h_ptr=jlist[jj];
h_ptr++;
ij_count++;
if (ij_count==IJ_SIZE) {
dev_nbor.sync();
_host_offset.view_offset(IJ_SIZE*(copy_count%2),host_packed,IJ_SIZE);
_nbor_offset.view_offset(dev_count,dev_packed,IJ_SIZE);
ucl_copy(_nbor_offset,_host_offset,true);
copy_count++;
ij_count=0;
dev_count+=IJ_SIZE;
h_ptr=host_packed.begin()+(IJ_SIZE*(copy_count%2));
}
}
}
if (ij_count!=0) {
dev_nbor.sync();
_host_offset.view_offset(IJ_SIZE*(copy_count%2),host_packed,ij_count);
_nbor_offset.view_offset(dev_count,dev_packed,ij_count);
ucl_copy(_nbor_offset,_host_offset,true);
}
_acc_view.view_offset(inum,dev_nbor,inum*2);
if (_use_packing)
ucl_copy(_acc_view,host_acc,inum*2,true);
else {
ucl_copy(_acc_view,host_acc,inum,true);
_host_offset.view_offset(inum,host_acc,inum);
ucl_copy(dev_packed_begin,_host_offset,inum,true);
}
time_nbor.stop();
if (_use_packing==false) {
time_kernel.start();
int GX=static_cast<int>(ceil(static_cast<double>(inum)*_threads_per_atom/
block_size));
_shared->k_nbor.set_size(GX,block_size);
_shared->k_nbor.run(&dev_nbor, &dev_packed, &dev_packed_begin, &inum,
&_threads_per_atom);
time_kernel.stop();
}
}
template <class numtyp, class acctyp>
void Neighbor::resize_max_neighbors(int maxn, bool &success) {
if (maxn == 0) maxn = 1;
if (maxn>_max_nbors) {
int mn=static_cast<int>(static_cast<double>(maxn)*1.10);
mn = ((mn-1)/_threads_per_atom+1)*_threads_per_atom;
dev_nbor.clear();
success=success &&
(dev_nbor.alloc((mn+2)*_max_atoms,*dev)==UCL_SUCCESS);
if (!success) return;
_gpu_bytes=dev_nbor.row_bytes();
if (_max_host>0) {
nbor_host.clear();
success=(nbor_host.alloc(mn*_max_host,*dev,UCL_READ_WRITE,
UCL_READ_WRITE)==UCL_SUCCESS) && success;
if (!success) return;
int *ptr=nbor_host.host.begin();
for (int i=0; i<_max_host; i++) {
host_jlist[i]=ptr;
ptr+=mn;
}
_gpu_bytes+=nbor_host.row_bytes();
} else {
nbor_host.device.view(dev_nbor);
dev_numj_host.view(dev_nbor);
}
if (_alloc_packed) {
dev_packed.clear();
success=success && (dev_packed.alloc((mn+2)*_max_atoms,*dev,
_packed_permissions)==UCL_SUCCESS);
_gpu_bytes+=dev_packed.row_bytes();
}
_max_nbors=mn;
}
}
template <class numtyp, class acctyp>
void Neighbor::build_nbor_list(double **x, const int inum, const int host_inum,
const int nall, Atom<numtyp,acctyp> &atom,
double *sublo, double *subhi, tagint *tag,
int **nspecial, tagint **special, bool &success,
int &mn, UCL_Vector<int,int> &error_flag) {
_nbor_time_avail=true;
const int nt=inum+host_inum;
const double subx = subhi[0]-sublo[0];
const double suby = subhi[1]-sublo[1];
const double subz = subhi[2]-sublo[2];
// Calculate number of cells and allocate storage for binning as necessary
int ncellx, ncelly, ncellz;
int cells_in_cutoff=static_cast<int>(ceil(_cutoff/_cell_size));
int ghost_cells=2*cells_in_cutoff;
ncellx = static_cast<int>(ceil(subx/_cell_size))+ghost_cells;
ncelly = static_cast<int>(ceil(suby/_cell_size))+ghost_cells;
ncellz = static_cast<int>(ceil(subz/_cell_size))+ghost_cells;
#ifndef LAL_USE_OLD_NEIGHBOR
if (_auto_cell_size && subz>0.0) {
if (_old_ncellx!=ncellx || _old_ncelly!=ncelly || _old_ncellz!=ncellz) {
_cell_size = _shared->best_cell_size(subx, suby, subz, nt, _cutoff);
cells_in_cutoff=static_cast<int>(ceil(_cutoff/_cell_size));
ghost_cells=2*cells_in_cutoff;
ncellx = static_cast<int>(ceil(subx/_cell_size))+ghost_cells;
ncelly = static_cast<int>(ceil(suby/_cell_size))+ghost_cells;
ncellz = static_cast<int>(ceil(subz/_cell_size))+ghost_cells;
}
}
#endif
int ncell_3d = ncellx * ncelly * ncellz;
if (ncell_3d+1>_ncells) {
cell_counts.clear();
#ifndef LAL_USE_OLD_NEIGHBOR
cell_subgroup_counts.clear();
#endif
if (_gpu_nbor==2) {
if (_ncells>0)
delete [] cell_iter;
cell_iter = new int[ncell_3d+1];
success = success && (cell_counts.alloc(ncell_3d+1,*dev,
UCL_READ_WRITE,UCL_READ_ONLY) == UCL_SUCCESS);
#ifndef LAL_USE_OLD_NEIGHBOR
success = success && (cell_subgroup_counts.alloc(ncell_3d+1,*dev,
UCL_READ_WRITE,UCL_READ_ONLY) == UCL_SUCCESS);
if (!success) return;
cell_subgroup_counts.host[0]=0;
#endif
} else {
cell_counts.device.clear();
success = success && (cell_counts.device.alloc(ncell_3d+1,
*dev) == UCL_SUCCESS);
}
if (!success) return;
_ncells=ncell_3d+1;
_cell_bytes=cell_counts.device.row_bytes();
#ifndef LAL_USE_OLD_NEIGHBOR
_cell_bytes+=cell_subgroup_counts.row_bytes()+subgroup2cell.row_bytes();
#endif
}
const numtyp cutoff_cast=static_cast<numtyp>(_cutoff);
if (_maxspecial>0) {
time_nbor.start();
UCL_H_Vec<int> view_nspecial;
UCL_H_Vec<tagint> view_special, view_tag;
view_nspecial.view(nspecial[0],nt*3,*dev);
view_special.view(special[0],nt*_maxspecial,*dev);
view_tag.view(tag,nall,*dev);
ucl_copy(dev_nspecial,view_nspecial,nt*3,false);
ucl_copy(dev_special_t,view_special,nt*_maxspecial,false);
ucl_copy(atom.dev_tag,view_tag,nall,false);
time_nbor.stop();
if (_time_device)
time_nbor.add_to_total();
time_transpose.start();
const int b2x=_block_cell_2d;
const int b2y=_block_cell_2d;
const int g2x=static_cast<int>(ceil(static_cast<double>(_maxspecial)/b2x));
const int g2y=static_cast<int>(ceil(static_cast<double>(nt)/b2y));
_shared->k_transpose.set_size(g2x,g2y,b2x,b2y);
_shared->k_transpose.run(&dev_special,&dev_special_t,&_maxspecial,&nt);
time_transpose.stop();
}
// If binning on CPU, do this now
#ifndef LAL_USE_OLD_NEIGHBOR
int subgroup_count = 0;
#endif
if (_gpu_nbor==2) {
#ifndef GERYON_OCL_FLUSH
dev_nbor.flush();
#endif
double stime = MPI_Wtime();
int *cell_id=atom.host_cell_id.begin();
int *particle_id=atom.host_particle_id.begin();
// Build cell list on CPU
cell_counts.host.zero();
double i_cell_size=1.0/_cell_size;
int offset_hi=cells_in_cutoff+1;
for (int i=0; i<nt; i++) {
double px, py, pz;
px=x[i][0]-sublo[0];
py=x[i][1]-sublo[1];
pz=x[i][2]-sublo[2];
int ix = static_cast<int>(px*i_cell_size+cells_in_cutoff);
ix = std::max(ix,cells_in_cutoff);
ix = std::min(ix,ncellx-offset_hi);
int iy = static_cast<int>(py*i_cell_size+cells_in_cutoff);
iy = std::max(iy,cells_in_cutoff);
iy = std::min(iy,ncelly-offset_hi);
int iz = static_cast<int>(pz*i_cell_size+cells_in_cutoff);
iz = std::max(iz,cells_in_cutoff);
iz = std::min(iz,ncellz-offset_hi);
int id = ix+iy*ncellx+iz*ncellx*ncelly;
cell_id[i] = id;
cell_counts[id+1]++;
}
#ifndef LAL_USE_OLD_NEIGHBOR
// populate subgroup counts only for the local atoms
for (int i=1; i<_ncells; i++) {
cell_subgroup_counts[i] = ceil(static_cast<double>(cell_counts[i]) /
_simd_size);
subgroup_count += cell_subgroup_counts[i];
cell_subgroup_counts[i] += cell_subgroup_counts[i-1];
}
if (subgroup_count > subgroup2cell.numel()) {
subgroup2cell.clear();
success = success && (subgroup2cell.alloc(1.1*subgroup_count,*dev,
UCL_READ_WRITE,UCL_READ_ONLY) == UCL_SUCCESS);
if (!success) return;
_cell_bytes=cell_counts.device.row_bytes() +
cell_subgroup_counts.row_bytes()+subgroup2cell.row_bytes();
}
for (int i=1; i<_ncells; i++)
for (int j=cell_subgroup_counts[i-1]; j<cell_subgroup_counts[i]; j++)
subgroup2cell[j] = i-1;
#endif
for (int i=nt; i<nall; i++) {
double px, py, pz;
px=x[i][0]-sublo[0]+_cell_size*cells_in_cutoff;
py=x[i][1]-sublo[1]+_cell_size*cells_in_cutoff;
pz=x[i][2]-sublo[2]+_cell_size*cells_in_cutoff;
int ix = static_cast<int>(px*i_cell_size);
ix = std::max(ix,0);
ix = std::min(ix,ncellx-1);
int iy = static_cast<int>(py*i_cell_size);
iy = std::max(iy,0);
iy = std::min(iy,ncelly-1);
int iz = static_cast<int>(pz*i_cell_size);
iz = std::max(iz,0);
iz = std::min(iz,ncellz-1);
int id = ix+iy*ncellx+iz*ncellx*ncelly;
cell_id[i] = id;
cell_counts[id+1]++;
}
mn=0;
for (int i=0; i<_ncells; i++)
mn=std::max(mn,cell_counts[i]);
double mind=std::min(subx,suby);
mind=std::min(mind,subz) + _cutoff;
double ics;
if (mind >= _cell_size) ics = i_cell_size;
else ics = 1.0 / mind;
double vadjust=_cutoff*ics;
vadjust*=vadjust*vadjust*4.1888;
if (_cutoff < _cell_size) vadjust*=1.46;
mn=std::max(mn,static_cast<int>(ceil(_max_neighbor_factor*vadjust*mn)));
if (mn<33) mn+=3;
resize_max_neighbors<numtyp,acctyp>(mn,success);
set_nbor_block_size(mn/2);
if (!success)
return;
_total_atoms=nt;
// For neighbor builds for host atoms, _max_nbors is used for neighbor
// allocation offsets.
if (_max_host > 0) mn=_max_nbors;
cell_iter[0]=0;
for (int i=1; i<_ncells; i++) {
cell_counts[i]+=cell_counts[i-1];
cell_iter[i]=cell_counts[i];
}
time_hybrid1.start();
#ifndef LAL_USE_OLD_NEIGHBOR
if (_old_ncellx!=ncellx || _old_ncelly!=ncelly || _old_ncellz!=ncellz) {
_old_ncellx = ncellx;
_old_ncelly = ncelly;
_old_ncellz = ncellz;
const int bin_stencil_stride = cells_in_cutoff * 2 + 1;
const int bin_stencil_size = bin_stencil_stride * bin_stencil_stride;
if (bin_stencil_size > _host_bin_stencil.numel())
_host_bin_stencil.alloc(bin_stencil_size,*dev);
for (int s = 0; s<bin_stencil_size; s++) {
const int nbory = s % bin_stencil_stride - cells_in_cutoff;
const int nborz = s / bin_stencil_stride - cells_in_cutoff;
_host_bin_stencil[s] = nbory*ncellx + nborz*ncellx*ncelly;
}
_bin_stencil.update_device(_host_bin_stencil,bin_stencil_size);
}
#endif
cell_counts.update_device(ncell_3d+1,true);
#ifndef LAL_USE_OLD_NEIGHBOR
cell_subgroup_counts.update_device(ncell_3d+1,true);
subgroup2cell.update_device(subgroup_count,true);
#endif
time_hybrid1.stop();
for (int i=0; i<nall; i++) {
int celli=cell_id[i];
int ploc=cell_iter[celli];
cell_iter[celli]++;
particle_id[ploc]=i;
}
time_hybrid2.start();
ucl_copy(atom.dev_particle_id,atom.host_particle_id,nall,true);
time_hybrid2.stop();
_bin_time+=MPI_Wtime()-stime;
}
time_kernel.start();
_nbor_pitch=inum;
_shared->neigh_tex.bind_float(atom.x,4);
// If binning on GPU, do this now
if (_gpu_nbor==1) {
mn = _max_nbors;
const numtyp i_cell_size=static_cast<numtyp>(1.0/_cell_size);
const int neigh_block=_block_cell_id;
const int GX=(int)ceil((double)nall/neigh_block);
const numtyp sublo0=static_cast<numtyp>(sublo[0]);
const numtyp sublo1=static_cast<numtyp>(sublo[1]);
const numtyp sublo2=static_cast<numtyp>(sublo[2]);
_shared->k_cell_id.set_size(GX,neigh_block);
_shared->k_cell_id.run(&atom.x, &atom.dev_cell_id,
&atom.dev_particle_id, &sublo0, &sublo1,
&sublo2, &i_cell_size, &ncellx, &ncelly, &ncellz,
&nt, &nall, &cells_in_cutoff);
atom.sort_neighbor(nall);
/* calculate cell count */
_shared->k_cell_counts.set_size(GX,neigh_block);
_shared->k_cell_counts.run(&atom.dev_cell_id, &cell_counts, &nall,
&ncell_3d);
}
/* build the neighbor list */
const int cell_block=_block_nbor_build;
#ifndef LAL_USE_OLD_NEIGHBOR
int nblocks = (subgroup_count-1)/(cell_block/_simd_size)+1;
_shared->k_build_nbor.set_size(nblocks, cell_block);
_shared->k_build_nbor.run(&atom.x, &atom.dev_particle_id,
&cell_counts, &dev_nbor, &nbor_host,
&dev_numj_host, &mn, &cutoff_cast, &ncellx,
&ncelly, &ncellz, &inum, &nt, &nall,
&_threads_per_atom, &cells_in_cutoff,
&cell_subgroup_counts, &subgroup2cell,
&subgroup_count, _bin_stencil.begin(),
&error_flag);
error_flag.update_host();
#else
_shared->k_build_nbor.set_size(ncellx-ghost_cells,(ncelly-ghost_cells)*
(ncellz-ghost_cells),cell_block,1);
_shared->k_build_nbor.run(&atom.x, &atom.dev_particle_id,
&cell_counts, &dev_nbor, &nbor_host,
&dev_numj_host, &mn, &cutoff_cast, &ncellx,
&ncelly, &ncellz, &inum, &nt, &nall,
&_threads_per_atom, &cells_in_cutoff);
#endif
/* Get the maximum number of nbors and realloc if necessary */
UCL_D_Vec<int> _numj_view;
if (_gpu_nbor!=2 || inum<nt) {
_numj_view.view_offset(inum,dev_nbor,inum);
ucl_copy(host_acc,_numj_view,inum,true);
if (nt>inum) {
_host_offset.view_offset(inum,host_acc,nt-inum);
ucl_copy(_host_offset,dev_numj_host,nt-inum,true);
}
}
if (_gpu_nbor!=2) {
host_acc.sync();
mn=host_acc[0];
for (int i=1; i<nt; i++)
mn=std::max(mn,host_acc[i]);
set_nbor_block_size(mn);
if (mn>_max_nbors) {
resize_max_neighbors<numtyp,acctyp>(mn,success);
if (!success)
return;
time_kernel.stop();
if (_time_device)
time_kernel.add_to_total();
build_nbor_list(x, inum, host_inum, nall, atom, sublo, subhi, tag,
nspecial, special, success, mn, error_flag);
return;
}
}
if (_maxspecial>0) {
const int GX2=static_cast<int>(ceil(static_cast<double>
(nt*_threads_per_atom)/cell_block));
_shared->k_special.set_size(GX2,cell_block);
_shared->k_special.run(&dev_nbor, &nbor_host, &dev_numj_host,
&atom.dev_tag, &dev_nspecial, &dev_special,
&inum, &nt, &_max_nbors, &_threads_per_atom);
}
time_kernel.stop();
time_nbor.start();
if (inum<nt) {
nbor_host.update_host(true);
nbor_host.sync();
}
time_nbor.stop();
}
template void Neighbor::build_nbor_list<PRECISION,ACC_PRECISION>
(double **x, const int inum, const int host_inum, const int nall,
Atom<PRECISION,ACC_PRECISION> &atom, double *sublo, double *subhi,
tagint *, int **, tagint **, bool &success, int &mn,
UCL_Vector<int,int> &error_flag);
|