File: lal_pppm.cu

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (291 lines) | stat: -rw-r--r-- 8,956 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
// **************************************************************************
//                                  pppm.cu
//                             -------------------
//                           W. Michael Brown (ORNL)
//
//  Device code for PPPM acceleration
//
// __________________________________________________________________________
//    This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
// __________________________________________________________________________
//
//    begin                :
//    email                : brownw@ornl.gov
// ***************************************************************************

#if defined(NV_KERNEL) || defined(USE_HIP)

#include "lal_preprocessor.h"
#ifndef _DOUBLE_DOUBLE
_texture( pos_tex,float4);
_texture( q_tex,float);
#else
_texture_2d( pos_tex,int4);
_texture( q_tex,int2);
#endif

// Allow PPPM to compile without atomics for NVIDIA 1.0 cards, error
// generated at runtime with use of pppm/gpu
#if defined(NV_KERNEL) && (__CUDA_ARCH__ < 110)
#define atomicAdd(x,y) *(x)+=0
#endif

#else

#define pos_tex x_
#define q_tex q_
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics: enable

#ifdef GRD_DBL
#if defined(cl_amd_fp64)
#pragma OPENCL EXTENSION cl_amd_fp64 : enable
#else
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif
#endif

#endif

// Number of threads per pencil for charge spread
#define PENCIL_SIZE MEM_THREADS
// Number of pencils per block for charge spread
#define BLOCK_PENCILS (PPPM_BLOCK_1D/PENCIL_SIZE)

__kernel void particle_map(const __global numtyp4 *restrict x_,
                           const __global numtyp *restrict q_,
                           const grdtyp delvolinv, const int nlocal,
                           __global int *restrict counts,
                           __global grdtyp4 *restrict ans,
                           const grdtyp b_lo_x, const grdtyp b_lo_y,
                           const grdtyp b_lo_z, const grdtyp delxinv,
                           const grdtyp delyinv, const grdtyp delzinv,
                           const int nlocal_x, const int nlocal_y,
                           const int nlocal_z, const int atom_stride,
                           const int max_atoms,
                           __global int *restrict error) {
  // ii indexes the two interacting particles in gi
  int ii=GLOBAL_ID_X;

  // Resequence the atom indices to avoid collisions during atomic ops
  int nthreads=GLOBAL_SIZE_X;
  ii=fast_mul(ii,PPPM_BLOCK_1D);
  ii-=(ii/nthreads)*(nthreads-1);

  int nx,ny,nz;

  if (ii<nlocal) {
    numtyp4 p;
    fetch4(p,ii,pos_tex);
    grdtyp4 delta;
    fetch(delta.w,ii,q_tex);
    delta.w*=delvolinv;

    if (delta.w!=(grdtyp)0.0) {
      delta.x=(p.x-b_lo_x)*delxinv;
      nx=delta.x;
      delta.y=(p.y-b_lo_y)*delyinv;
      ny=delta.y;
      delta.z=(p.z-b_lo_z)*delzinv;
      nz=delta.z;

      if (delta.x<(grdtyp)0 || delta.y<(grdtyp)0 || delta.z<(grdtyp)0 ||
          nx>=nlocal_x || ny>=nlocal_y || nz>=nlocal_z)
        *error=1;
      else {
        delta.x=nx+(grdtyp)0.5-delta.x;
        delta.y=ny+(grdtyp)0.5-delta.y;
        delta.z=nz+(grdtyp)0.5-delta.z;

        int i=nz*nlocal_y*nlocal_x+ny*nlocal_x+nx;
        int old=atom_add(counts+i, 1);
        if (old>=max_atoms) {
          *error=2;
          atom_add(counts+i, -1);
        } else
          ans[atom_stride*old+i]=delta;
      }
    }
  }
}

/* --------------------------- */

__kernel void make_rho(const __global int *restrict counts,
                       const __global grdtyp4 *restrict atoms,
                       __global grdtyp *restrict brick,
                       const __global grdtyp *restrict _rho_coeff,
                       const int atom_stride, const int npts_x,
                       const int npts_y, const int npts_z, const int nlocal_x,
                       const int nlocal_y, const int nlocal_z,
                       const int order_m_1, const int order, const int order2) {
  __local grdtyp rho_coeff[PPPM_MAX_SPLINE*PPPM_MAX_SPLINE];
  __local grdtyp front[BLOCK_PENCILS][PENCIL_SIZE+PPPM_MAX_SPLINE];
  __local grdtyp ans[PPPM_MAX_SPLINE][PPPM_BLOCK_1D];

  int tid=THREAD_ID_X;
  if (tid<order2+order)
    rho_coeff[tid]=_rho_coeff[tid];

  int pid=tid/PENCIL_SIZE;
  int fid=tid%PENCIL_SIZE;
  int fid_halo=PENCIL_SIZE+fid;
  if (fid<order)
    front[pid][fid_halo]=(grdtyp)0.0;

  __syncthreads();

  int bt=BLOCK_ID_X*BLOCK_PENCILS+pid;
  int ny=bt%npts_y;
  int nz=bt/npts_y;
  int y_start=0;
  int z_start=0;
  int y_stop=order;
  int z_stop=order;
  if (ny<order_m_1)
    y_start=order_m_1-ny;
  if (nz<order_m_1)
    z_start=order_m_1-nz;
  if (ny>=nlocal_y)
    y_stop-=ny-nlocal_y+1;
  if (nz>=nlocal_z)
    z_stop-=nz-nlocal_z+1;
  int z_stride=fast_mul(nlocal_x,nlocal_y);

  int loop_count=npts_x/PENCIL_SIZE+1;
  int nx=fid;
  int pt=fast_mul(nz,fast_mul(npts_y,npts_x))+fast_mul(ny,npts_x)+nx;
  for (int i=0 ; i<loop_count; i++) {
    for (int n=0; n<order; n++)
      ans[n][tid]=(grdtyp)0.0;
    if (nx<nlocal_x && nz<npts_z) {
      int z_pos=fast_mul(nz+z_start-order_m_1,z_stride);
      for (int m=z_start; m<z_stop; m++) {
        int y_pos=fast_mul(ny+y_start-order_m_1,nlocal_x);
        for (int l=y_start; l<y_stop; l++) {
          int pos=z_pos+y_pos+nx;
          int natoms=fast_mul(counts[pos],atom_stride);
          for (int row=pos; row<natoms; row+=atom_stride) {
            grdtyp4 delta=atoms[row];

            grdtyp rho1d_1=(grdtyp)0.0;
            grdtyp rho1d_2=(grdtyp)0.0;
            for (int k=order2+order-1; k > -1; k-=order) {
              rho1d_1=rho_coeff[k-l]+rho1d_1*delta.y;
              rho1d_2=rho_coeff[k-m]+rho1d_2*delta.z;
            }
            delta.w*=rho1d_1*rho1d_2;

            for (int n=0; n<order; n++) {
              grdtyp rho1d_0=(grdtyp)0.0;
              for (int k=order2+n; k>=n; k-=order)
                rho1d_0=rho_coeff[k]+rho1d_0*delta.x;
              ans[n][tid]+=delta.w*rho1d_0;
            }
          }
          y_pos+=nlocal_x;
        }
        z_pos+=z_stride;
      }
    }

    __syncthreads();
    if (fid<order) {
      front[pid][fid]=front[pid][fid_halo];
      front[pid][fid_halo]=(grdtyp)0.0;
    } else
      front[pid][fid]=(grdtyp)0.0;

    for (int n=0; n<order; n++) {
      front[pid][fid+n]+=ans[n][tid];
      __syncthreads();
    }

    if (nx<npts_x && nz<npts_z)
      brick[pt]=front[pid][fid];
    pt+=PENCIL_SIZE;
    nx+=PENCIL_SIZE;
  }
}

__kernel void interp(const __global numtyp4 *restrict x_,
                     const __global numtyp *restrict q_,
                     const int nlocal,
                     const __global grdtyp4 *restrict brick,
                     const __global grdtyp *restrict _rho_coeff,
                     const int npts_x, const int npts_yx, const grdtyp b_lo_x,
                     const grdtyp b_lo_y, const grdtyp b_lo_z,
                     const grdtyp delxinv,  const grdtyp delyinv,
                     const grdtyp delzinv, const int order,
                     const int order2, const grdtyp qqrd2e_scale,
                     __global acctyp4 *restrict ans) {
  __local grdtyp rho_coeff[PPPM_MAX_SPLINE*PPPM_MAX_SPLINE];
  __local grdtyp rho1d_0[PPPM_MAX_SPLINE][PPPM_BLOCK_1D];
  __local grdtyp rho1d_1[PPPM_MAX_SPLINE][PPPM_BLOCK_1D];

  int tid=THREAD_ID_X;
  if (tid<order2+order)
    rho_coeff[tid]=_rho_coeff[tid];
  __syncthreads();

  int ii=tid+BLOCK_ID_X*BLOCK_SIZE_X;

  int nx,ny,nz;
  grdtyp tx,ty,tz;

  if (ii<nlocal) {
    numtyp4 p;
    fetch4(p,ii,pos_tex);
    grdtyp qs;
    fetch(qs,ii,q_tex);
    qs*=qqrd2e_scale;

    acctyp4 ek;
    ek.x=(acctyp)0.0;
    ek.y=(acctyp)0.0;
    ek.z=(acctyp)0.0;
    if (qs!=(grdtyp)0.0) {
      tx=(p.x-b_lo_x)*delxinv;
      nx=tx;
      ty=(p.y-b_lo_y)*delyinv;
      ny=ty;
      tz=(p.z-b_lo_z)*delzinv;
      nz=tz;

      grdtyp dx=nx+(grdtyp)0.5-tx;
      grdtyp dy=ny+(grdtyp)0.5-ty;
      grdtyp dz=nz+(grdtyp)0.5-tz;

      for (int k=0; k<order; k++) {
        rho1d_0[k][tid]=(grdtyp)0.0;
        rho1d_1[k][tid]=(grdtyp)0.0;
        for (int l=order2+k; l>=k; l-=order) {
          rho1d_0[k][tid]=rho_coeff[l]+rho1d_0[k][tid]*dx;
          rho1d_1[k][tid]=rho_coeff[l]+rho1d_1[k][tid]*dy;
        }
      }

      int mz=fast_mul(nz,npts_yx)+nx;
      for (int n=0; n<order; n++) {
        grdtyp rho1d_2=(grdtyp)0.0;
        for (int k=order2+n; k>=n; k-=order)
          rho1d_2=rho_coeff[k]+rho1d_2*dz;
        grdtyp z0=qs*rho1d_2;
        int my=mz+fast_mul(ny,npts_x);
        for (int m=0; m<order; m++) {
          grdtyp y0=z0*rho1d_1[m][tid];
                for (int l=0; l<order; l++) {
                  grdtyp x0=y0*rho1d_0[l][tid];
                  grdtyp4 el=brick[my+l];
                  ek.x-=x0*el.x;
                  ek.y-=x0*el.y;
                  ek.z-=x0*el.z;
                }
          my+=npts_x;
        }
        mz+=npts_yx;
            }
    }
    ans[ii]=ek;
        }
}