File: lal_pppm_ext.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (180 lines) | stat: -rw-r--r-- 6,836 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/***************************************************************************
                                 pppm_ext.cpp
                             -------------------
                            W. Michael Brown (ORNL)

  Functions for LAMMPS access to PPPM acceleration routines

 __________________________________________________________________________
    This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
 __________________________________________________________________________

    begin                :
    email                : brownw@ornl.gov
 ***************************************************************************/

#include <iostream>
#include <cassert>
#include <cmath>

#include "lal_pppm.h"

using namespace std;
using namespace LAMMPS_AL;

static PPPM<PRECISION,ACC_PRECISION,float,_lgpu_float4> PPPMF;
static PPPM<PRECISION,ACC_PRECISION,double,_lgpu_double4> PPPMD;

// ---------------------------------------------------------------------------
// Allocate memory on host and device and copy constants to device
// ---------------------------------------------------------------------------
template <class grdtyp, class memtyp>
grdtyp * pppm_gpu_init(memtyp &pppm, const int nlocal, const int nall,
                       FILE *screen, const int order, const int nxlo_out,
                       const int nylo_out, const int nzlo_out,
                       const int nxhi_out, const int nyhi_out,
                       const int nzhi_out, grdtyp **rho_coeff,
                       grdtyp **vd_brick, const double slab_volfactor,
                       const int nx_pppm, const int ny_pppm, const int nz_pppm,
                       const bool split, int &success) {
  pppm.clear(0.0);
  int first_gpu=pppm.device->first_device();
  int last_gpu=pppm.device->last_device();
  int world_me=pppm.device->world_me();
  int gpu_rank=pppm.device->gpu_rank();
  int procs_per_gpu=pppm.device->procs_per_gpu();

  pppm.device->init_message(screen,"pppm",first_gpu,last_gpu);

  bool message=false;
  if (pppm.device->replica_me()==0 && screen)
    message=true;

  if (message) {
    fprintf(screen,"Initializing Device and compiling on process 0...");
    fflush(screen);
  }

  success=0;
  grdtyp * host_brick=nullptr;
  if (world_me==0)
    host_brick=pppm.init(nlocal,nall,screen,order,nxlo_out,nylo_out,nzlo_out,
                         nxhi_out,nyhi_out,nzhi_out,rho_coeff,vd_brick,
                         slab_volfactor,nx_pppm,ny_pppm,nz_pppm,split,success);

  pppm.device->world_barrier();
  if (message)
    fprintf(screen,"Done.\n");

  for (int i=0; i<procs_per_gpu; i++) {
    if (message) {
      if (last_gpu-first_gpu==0)
        fprintf(screen,"Initializing Device %d on core %d...",first_gpu,i);
      else
        fprintf(screen,"Initializing Devices %d-%d on core %d...",first_gpu,
                last_gpu,i);
      fflush(screen);
    }
    if (gpu_rank==i && world_me!=0)
      host_brick=pppm.init(nlocal,nall,screen,order,nxlo_out,nylo_out,
                           nzlo_out,nxhi_out,nyhi_out,nzhi_out,rho_coeff,
                           vd_brick,slab_volfactor,nx_pppm,ny_pppm,nz_pppm,
                           split,success);

    pppm.device->gpu_barrier();
    if (message)
      fprintf(screen,"Done.\n");
  }
  if (message)
    fprintf(screen,"\n");
  return host_brick;
}

float * pppm_gpu_init_f(const int nlocal, const int nall, FILE *screen,
                        const int order, const int nxlo_out,
                        const int nylo_out, const int nzlo_out,
                        const int nxhi_out, const int nyhi_out,
                        const int nzhi_out, float **rho_coeff,
                        float **vd_brick, const double slab_volfactor,
                        const int nx_pppm, const int ny_pppm, const int nz_pppm,
                        const bool split, const bool respa, int &success) {
  float *b=pppm_gpu_init(PPPMF,nlocal,nall,screen,order,nxlo_out,nylo_out,
                         nzlo_out,nxhi_out,nyhi_out,nzhi_out,rho_coeff,vd_brick,
                         slab_volfactor,nx_pppm,ny_pppm,nz_pppm,split,success);
  if (split==false && respa==false)
    PPPMF.device->set_single_precompute(&PPPMF);
  return b;
}

void pppm_gpu_clear_f(const double cpu_time) {
  PPPMF.clear(cpu_time);
}

int pppm_gpu_spread_f(const int ago, const int nlocal, const int nall,
                     double **host_x, int *host_type, bool &success,
                     double *host_q, double *boxlo, const double delxinv,
                     const double delyinv, const double delzinv) {
  return PPPMF.spread(ago,nlocal,nall,host_x,host_type,success,host_q,boxlo,
                      delxinv,delyinv,delzinv);
}

void pppm_gpu_interp_f(const float qqrd2e_scale) {
  PPPMF.interp(qqrd2e_scale);
}

double pppm_gpu_bytes_f() {
  return PPPMF.host_memory_usage();
}

void pppm_gpu_forces_f(double **f) {
  double etmp;
  PPPMF.atom->data_unavail();
  int error_flag;
  PPPMF.ans->get_answers(f,nullptr,nullptr,nullptr,nullptr,etmp,error_flag);
}

double * pppm_gpu_init_d(const int nlocal, const int nall, FILE *screen,
                         const int order, const int nxlo_out,
                         const int nylo_out, const int nzlo_out,
                         const int nxhi_out, const int nyhi_out,
                         const int nzhi_out, double **rho_coeff,
                         double **vd_brick, const double slab_volfactor,
                         const int nx_pppm, const int ny_pppm,
                         const int nz_pppm, const bool split,
                         const bool respa, int &success) {
  double *b=pppm_gpu_init(PPPMD,nlocal,nall,screen,order,nxlo_out,nylo_out,
                          nzlo_out,nxhi_out,nyhi_out,nzhi_out,rho_coeff,
                          vd_brick,slab_volfactor,nx_pppm,ny_pppm,nz_pppm,
                          split,success);
  if (split==false && respa==false)
    PPPMD.device->set_double_precompute(&PPPMD);
  return b;
}

void pppm_gpu_clear_d(const double cpu_time) {
  PPPMD.clear(cpu_time);
}

int pppm_gpu_spread_d(const int ago, const int nlocal, const int nall,
                      double **host_x, int *host_type, bool &success,
                      double *host_q, double *boxlo, const double delxinv,
                      const double delyinv, const double delzinv) {
  return PPPMD.spread(ago,nlocal,nall,host_x,host_type,success,host_q,boxlo,
                      delxinv,delyinv,delzinv);
}

void pppm_gpu_interp_d(const double qqrd2e_scale) {
  PPPMD.interp(qqrd2e_scale);
}

double pppm_gpu_bytes_d() {
  return PPPMD.host_memory_usage();
}

void pppm_gpu_forces_d(double **f) {
  double etmp;
  PPPMD.atom->data_unavail();
  int error_flag;
  PPPMD.ans->get_answers(f,nullptr,nullptr,nullptr,nullptr,etmp,error_flag);
}