1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/***************************************************************************
sw.cpp
-------------------
W. Michael Brown (ORNL)
Class for acceleration of the sw pair style.
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin : Tue March 26, 2013
email : brownw@ornl.gov
***************************************************************************/
#if defined(USE_OPENCL)
#include "sw_cl.h"
#elif defined(USE_CUDART)
const char *sw=0;
#else
#include "sw_cubin.h"
#endif
#include "lal_sw.h"
#include <cassert>
namespace LAMMPS_AL {
#define SWT SW<numtyp, acctyp>
extern Device<PRECISION,ACC_PRECISION> device;
template <class numtyp, class acctyp>
SWT::SW() : BaseThree<numtyp,acctyp>(), _allocated(false) {
}
template <class numtyp, class acctyp>
SWT::~SW() {
clear();
}
template <class numtyp, class acctyp>
int SWT::bytes_per_atom(const int max_nbors) const {
return this->bytes_per_atom_atomic(max_nbors);
}
template <class numtyp, class acctyp>
int SWT::init(const int ntypes, const int nlocal, const int nall,
const int max_nbors, const double cell_size,
const double gpu_split, FILE *_screen, double **ncutsq,
double **ncut, double **sigma, double **powerp, double **powerq,
double **sigma_gamma, double **c1, double **c2, double **c3,
double **c4, double **c5, double **c6, double ***lambda_epsilon,
double ***costheta, const int *map, int ***e2param) {
_lj_types=ntypes;
int oldparam=-1;
int onetype=-1;
int onetype3=0;
int spq=1;
int mtypes=0;
#ifdef USE_OPENCL
for (int ii=1; ii<ntypes; ii++) {
int i=map[ii];
if (i<0) continue;
for (int jj=1; jj<ntypes; jj++) {
int j=map[jj];
if (j<0) continue;
if (powerp[ii][jj] != 4.0 || powerq[ii][jj] != 0.0)
spq=0;
for (int kk=1; kk<ntypes; kk++) {
int k=map[kk];
if (k<0) continue;
int param=e2param[i][j][k];
if (oldparam!=param) {
oldparam=param;
onetype=ntypes*ii+jj;
onetype3=ntypes*ntypes*ii+ntypes*jj+kk;
mtypes++;
}
}
}
}
if (mtypes>1) onetype=-1;
#endif
int success;
success=this->init_three(nlocal,nall,max_nbors,0,cell_size,gpu_split,
_screen,sw,"k_sw","k_sw_three_center",
"k_sw_three_end","k_sw_short_nbor",onetype,
onetype3,spq);
if (success!=0)
return success;
UCL_H_Vec<numtyp> host_write(ntypes*ntypes*ntypes*4,*(this->ucl_device),
UCL_WRITE_ONLY);
host_write.zero();
for (int i=1; i<ntypes; i++)
for (int j=1; j<ntypes; j++) {
double ccutsq = ncut[i][j]*ncut[i][j];
if (ccutsq > 0.0 && ncutsq[i][j]>=ccutsq)
ncutsq[i][j]=ccutsq*0.98;
}
// pack coefficients into arrays
cutsq.alloc(ntypes*ntypes,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack1(ntypes,ntypes,cutsq,host_write,ncutsq);
sw_pre.alloc(ntypes*ntypes,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,ntypes,sw_pre,host_write,ncut,sigma,
powerp,powerq);
c_14.alloc(ntypes*ntypes,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,ntypes,c_14,host_write,c1,c2,c3,c4);
c_56.alloc(ntypes*ntypes,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack2(ntypes,ntypes,c_56,host_write,c5,c6);
cut_sigma_gamma.alloc(ntypes*ntypes,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack2(ntypes,ntypes,cut_sigma_gamma,host_write,ncut,
sigma_gamma);
sw_pre3.alloc(ntypes*ntypes*ntypes,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack2(ntypes,sw_pre3,host_write,lambda_epsilon,costheta);
_allocated=true;
this->_max_bytes=cutsq.row_bytes()+sw_pre.row_bytes()+c_14.row_bytes()+
c_56.row_bytes()+cut_sigma_gamma.row_bytes()+sw_pre3.row_bytes();
return 0;
}
template <class numtyp, class acctyp>
void SWT::clear() {
if (!_allocated)
return;
_allocated=false;
cutsq.clear();
sw_pre.clear();
c_14.clear();
c_56.clear();
cut_sigma_gamma.clear();
sw_pre3.clear();
this->clear_atomic();
}
template <class numtyp, class acctyp>
double SWT::host_memory_usage() const {
return this->host_memory_usage_atomic()+sizeof(SW<numtyp,acctyp>);
}
#define KTHREADS this->_threads_per_atom
#define JTHREADS this->_threads_per_atom
// ---------------------------------------------------------------------------
// Calculate energies, forces, and torques
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int SWT::loop(const int eflag, const int vflag, const int evatom,
bool &success) {
const int nbor_pitch=this->nbor->nbor_pitch();
// build the short neighbor list
int ainum=this->_ainum;
this->time_pair.start();
int BX=this->block_pair();
int GX=static_cast<int>(ceil(static_cast<double>(ainum)/BX));
this->k_short_nbor.set_size(GX,BX);
this->k_short_nbor.run(&this->atom->x, &cutsq, &_lj_types,
&this->nbor->dev_nbor, &this->nbor->dev_packed,
&ainum, &nbor_pitch, &this->_threads_per_atom);
// this->_nbor_data == nbor->dev_packed for gpu_nbor == 0 and tpa > 1
// this->_nbor_data == nbor->dev_nbor for gpu_nbor == 1 or tpa == 1
ainum=this->ans->inum();
BX=this->block_size();
GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/(KTHREADS*JTHREADS))));
this->k_3center_sel->set_size(GX,BX);
this->k_3center_sel->run(&this->atom->x, &cut_sigma_gamma, &sw_pre3,
&_lj_types, &this->nbor->dev_nbor,
&this->ans->force, &this->ans->engv, &eflag,
&vflag, &ainum, &nbor_pitch,
&this->_threads_per_atom, &evatom);
Answer<numtyp,acctyp> *end_ans;
#ifdef THREE_CONCURRENT
end_ans=this->ans2;
#else
end_ans=this->ans;
#endif
if (evatom!=0) {
this->k_three_end_vatom.set_size(GX,BX);
this->k_three_end_vatom.run(&this->atom->x, &cut_sigma_gamma,
&sw_pre3, &_lj_types, &this->nbor->dev_nbor,
&this->nbor->three_ilist, &end_ans->force,
&end_ans->engv, &eflag, &vflag, &ainum,
&nbor_pitch,&this->_threads_per_atom,
&this->_gpu_nbor);
} else {
this->k_3end_sel->set_size(GX,BX);
this->k_3end_sel->run(&this->atom->x, &cut_sigma_gamma, &sw_pre3,
&_lj_types, &this->nbor->dev_nbor,
&this->nbor->three_ilist, &end_ans->force,
&end_ans->engv, &eflag, &vflag, &ainum, &nbor_pitch,
&this->_threads_per_atom, &this->_gpu_nbor);
}
BX=this->block_pair();
int GXT=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/this->_threads_per_atom)));
this->k_sel->set_size(GXT,BX);
this->k_sel->run(&this->atom->x, &sw_pre, &c_14, &c_56,
&_lj_types, &this->nbor->dev_nbor,
&this->ans->force, &this->ans->engv, &eflag, &vflag,
&ainum, &nbor_pitch, &this->_threads_per_atom, &GX);
this->time_pair.stop();
return GX;
}
template class SW<PRECISION,ACC_PRECISION>;
}
|