File: lal_ufm.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (162 lines) | stat: -rw-r--r-- 5,701 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/***************************************************************************
                                   ufm.cpp
                             -------------------
                            Rodolfo Paula Leite (Unicamp/Brazil)
                            Maurice de Koning (Unicamp/Brazil)

  Class for acceleration of the ufm pair style.

 __________________________________________________________________________
    This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
 __________________________________________________________________________

    begin                :
    email                : pl.rodolfo@gmail.com
                           dekoning@ifi.unicamp.br
 ***************************************************************************/

#if defined(USE_OPENCL)
#include "ufm_cl.h"
#elif defined(USE_CUDART)
const char *ufm=0;
#else
#include "ufm_cubin.h"
#endif

#include "lal_ufm.h"
#include <cassert>
namespace LAMMPS_AL {
#define UFMT UFM<numtyp, acctyp>

extern Device<PRECISION,ACC_PRECISION> device;

template <class numtyp, class acctyp>
UFMT::UFM() : BaseAtomic<numtyp,acctyp>(), _allocated(false) {
}

template <class numtyp, class acctyp>
UFMT::~UFM() {
  clear();
}

template <class numtyp, class acctyp>
int UFMT::bytes_per_atom(const int max_nbors) const {
  return this->bytes_per_atom_atomic(max_nbors);
}

template <class numtyp, class acctyp>
int UFMT::init(const int ntypes,
                          double **host_cutsq, double **host_uf1,
                          double **host_uf2, double **host_uf3,
                          double **host_offset,
                          double *host_special_lj, const int nlocal,
                          const int nall, const int max_nbors,
                          const int maxspecial, const double cell_size,
                          const double gpu_split, FILE *_screen) {
  int success;
  success=this->init_atomic(nlocal,nall,max_nbors,maxspecial,cell_size,gpu_split,
                            _screen,ufm,"k_ufm");
  if (success!=0)
    return success;

  // If atom type constants fit in shared memory use fast kernel
  int lj_types=ntypes;
  shared_types=false;
  int max_shared_types=this->device->max_shared_types();
  if (lj_types<=max_shared_types && this->_block_size>=max_shared_types) {
    lj_types=max_shared_types;
    shared_types=true;
  }
  _lj_types=lj_types;

  // Allocate a host write buffer for data initialization
  UCL_H_Vec<numtyp> host_write(lj_types*lj_types*32,*(this->ucl_device),
                               UCL_WRITE_ONLY);

  for (int i=0; i<lj_types*lj_types; i++)
    host_write[i]=0.0;

  uf1.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
  this->atom->type_pack4(ntypes,lj_types,uf1,host_write,host_uf1,host_uf2,
                         host_cutsq);

  uf3.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
  this->atom->type_pack4(ntypes,lj_types,uf3,host_write,host_uf3,host_uf2,
                         host_offset);

  UCL_H_Vec<double> dview;
  sp_lj.alloc(4,*(this->ucl_device),UCL_READ_ONLY);
  dview.view(host_special_lj,4,*(this->ucl_device));
  ucl_copy(sp_lj,dview,false);

  _allocated=true;
  this->_max_bytes=uf1.row_bytes()+uf3.row_bytes()+sp_lj.row_bytes();
  return 0;
}

template <class numtyp, class acctyp>
void UFMT::reinit(const int ntypes, double **host_cutsq, double **host_uf1,
                 double **host_uf2, double **host_uf3, double **host_offset) {
  // Allocate a host write buffer for data initialization
  UCL_H_Vec<numtyp> host_write(_lj_types*_lj_types*32,*(this->ucl_device),
                               UCL_WRITE_ONLY);

  for (int i=0; i<_lj_types*_lj_types; i++)
    host_write[i]=0.0;

  this->atom->type_pack4(ntypes,_lj_types,uf1,host_write,host_uf1,host_uf2,
                         host_cutsq);
  this->atom->type_pack4(ntypes,_lj_types,uf3,host_write,host_uf3,host_uf2,
                         host_offset);
}

template <class numtyp, class acctyp>
void UFMT::clear() {
  if (!_allocated)
    return;
  _allocated=false;

  uf1.clear();
  uf3.clear();
  sp_lj.clear();
  this->clear_atomic();
}

template <class numtyp, class acctyp>
double UFMT::host_memory_usage() const {
  return this->host_memory_usage_atomic()+sizeof(UFM<numtyp,acctyp>);
}

// ---------------------------------------------------------------------------
// Calculate energies, forces, and torques
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int UFMT::loop(const int eflag, const int vflag) {
  // Compute the block size and grid size to keep all cores busy
  const int BX=this->block_size();
  int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
                               (BX/this->_threads_per_atom)));

  int ainum=this->ans->inum();
  int nbor_pitch=this->nbor->nbor_pitch();
  this->time_pair.start();
  if (shared_types) {
    this->k_pair_sel->set_size(GX,BX);
    this->k_pair_sel->run(&this->atom->x, &uf1, &uf3, &sp_lj,
                          &this->nbor->dev_nbor, &this->_nbor_data->begin(),
                          &this->ans->force, &this->ans->engv, &eflag,
                          &vflag, &ainum, &nbor_pitch,
                          &this->_threads_per_atom);
  } else {
    this->k_pair.set_size(GX,BX);
    this->k_pair.run(&this->atom->x, &uf1, &uf3, &_lj_types, &sp_lj,
                     &this->nbor->dev_nbor, &this->_nbor_data->begin(),
                     &this->ans->force, &this->ans->engv, &eflag, &vflag,
                     &ainum, &nbor_pitch, &this->_threads_per_atom);
  }
  this->time_pair.stop();
  return GX;
}

template class UFM<PRECISION,ACC_PRECISION>;
}