File: poemstree.h

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (613 lines) | stat: -rw-r--r-- 20,347 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
/*
 *_________________________________________________________________________*
 *      POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE     *
 *      DESCRIPTION: SEE READ-ME                                           *
 *      FILE NAME: poemstree.h                                             *
 *      AUTHORS: See Author List                                           *
 *      GRANTS: See Grants List                                            *
 *      COPYRIGHT: (C) 2005 by Authors as listed in Author's List          *
 *      LICENSE: Please see License Agreement                              *
 *      DOWNLOAD: Free at www.rpi.edu/~anderk5                             *
 *      ADMINISTRATOR: Prof. Kurt Anderson                                 *
 *                     Computational Dynamics Lab                          *
 *                     Rensselaer Polytechnic Institute                    *
 *                     110 8th St. Troy NY 12180                           *
 *      CONTACT:        anderk5@rpi.edu                                    *
 *_________________________________________________________________________*/

#ifndef TREE_H
#define TREE_H

#include "poemstreenode.h"
#include "poemsnodelib.h"


// constants to indicate the balance factor of a node
const int leftheavy = -1;
const int balanced = 0;
const int rightheavy = 1;



class Tree{
protected:
        // pointer to tree root and node most recently accessed
        TreeNode *root;
        TreeNode *current;

        // number of elements in the tree
        int size;
        // used by the copy constructor and assignment operator
        TreeNode *CopyTree(TreeNode *t);

    // callback function to delete aux data
    void (*DeleteAuxData)(void *);

        // used by insert and delete method to re-establish
        // the avl conditions after a node is added or deleted
        // from a subtree
        void SingleRotateLeft (TreeNode* &p);
        void SingleRotateRight (TreeNode* &p);
        void DoubleRotateLeft (TreeNode* &p);
        void DoubleRotateRight (TreeNode* &p);
        void UpdateLeftTree (TreeNode* &p, int &reviseBalanceFactor);
        void UpdateRightTree (TreeNode* &p, int &reviseBalanceFactor);


        // used by destructor, assignment operator and ClearList
        void DeleteTree(TreeNode *t);
        void ClearTree(TreeNode * &t);

        // locate a node with data item and its parent in tree
        // used by Find and Delete
        TreeNode *FindNode(const int& item, TreeNode* & parent) const;

public:
        // constructor, destructor
        Tree(void);
        ~Tree(void)
        {
                ClearTree(root);
        };

        // assignment operator
        Tree& operator= (const Tree& rhs);

        // standard list handling methods
        void * Find(int& item);
        void * GetAuxData(int item) {
      return (void *)(FindNode(item, root)->GetAuxData());
    }
    void SetDeleteAuxData(void (*callback)(void *)) {
      DeleteAuxData = callback;
    }

        void Insert(const int& item, const int& data, void * AuxData = nullptr);
        void Delete(const int& item);
        void AVLInsert(TreeNode* &tree, TreeNode* newNode, int &reviseBalanceFactor);
        void ClearList(void);

        // tree specific methods
        void Update(const int& item);
        TreeNode *GetRoot(void) const;
};


// constructor
Tree::Tree(void)
{
        root = 0;
        current = 0;
        size = 0;
    DeleteAuxData = nullptr;
}



// return root pointer
TreeNode *Tree::GetRoot(void) const
{
        return root;
}


// assignment operator
Tree& Tree::operator = (const Tree& rhs)
{
        // can't copy a tree to itself
        if (this == &rhs)
                return *this;

        // clear current tree. copy new tree into current object
        ClearList();
        root = CopyTree(rhs.root);

        // assign current to root and set the tree size
        current = root;
        size = rhs.size;

        // return reference to current object
        return *this;
}

// search for data item in the tree. if found, return its node
// address and a pointer to its parent; otherwise, return a null pointer
TreeNode *Tree::FindNode(const int& item,
                                                                   TreeNode* & parent) const
{
        // cycle t through the tree starting with root
        TreeNode *t = root;

        // the parent of the root is a null pointer
        parent = nullptr;

        // terminate on empty subtree
        while(t != nullptr)
        {
                // stop on a match
                if (item == t->data)
                        break;
                else
                {
                        // update the parent pointer and move right of left
                        parent = t;
                        if (item < t->data)
                                t = t->left;
                        else
                                t = t->right;
                }
        }

        // return pointer to node; a null pointer if not found
        return t;
}

// search for item. if found, assign the node data to item
void * Tree::Find(int& item)
{
        // we use FindNode, which requires a parent parameter
        TreeNode *parent;

        // search tree for item. assign matching node to current
        current = FindNode (item, parent);

        // if item found, assign data to item and return True
        if (current != nullptr)
        {
                item = current->data;
        return current->GetAuxData();
        }
        else
                // item not found in the tree. return a null pointer
                return nullptr;
}


void Tree::Insert(const int& item, const int& data, void * AuxData)
{
        // declare AVL tree node pointer; using base class method
        // GetRoot. cast to larger node and assign root pointer
        TreeNode *treeRoot, *newNode;
         treeRoot = GetRoot();

        // flag used by AVLInsert to rebalance nodes
        int reviseBalanceFactor = 0;

        // get a new AVL tree node with empty pointer fields
        newNode = GetTreeNode(item,nullptr,nullptr);
        newNode->data = data;
        newNode->SetAuxData(AuxData);
        // call recursive routine to actually insert the element
        AVLInsert(treeRoot, newNode, reviseBalanceFactor);

        // assign new values to data members in the base class
        root = treeRoot;
        current = newNode;
        size++;

}

void Tree::AVLInsert(TreeNode *&tree, TreeNode *newNode, int &reviseBalanceFactor)
{
        // flag indicates change node's balanceFactor will occur
        int rebalanceCurrNode;

        // scan reaches an empty tree; time to insert the new node
        if (tree == nullptr)
        {
                // update the parent to point at newNode
                tree = newNode;

                // assign balanceFactor = 0 to new node
                tree->balanceFactor = balanced;
                // broadcast message; balanceFactor value is modified
                reviseBalanceFactor = 1;
        }
        // recursively move left if new data < current data
        else if (newNode->data < tree->data)
        {
                AVLInsert(tree->left,newNode,rebalanceCurrNode);
                // check if balanceFactor must be updated.
                if (rebalanceCurrNode)
                {
                        // went left from node that is left heavy. will
                        // violate AVL condition; use rotation (case 3)
                        if (tree->balanceFactor == leftheavy)
                                UpdateLeftTree(tree,reviseBalanceFactor);

                        // went left from balanced node. will create
                        // node left on the left. AVL condition OK (case 1)
                        else if (tree->balanceFactor == balanced)
                        {
                                tree->balanceFactor = leftheavy;
                                reviseBalanceFactor = 1;
                        }
                        // went left from node that is right heavy. will
                        // balance the node. AVL condition OK (case 2)
                        else
                        {
                                tree->balanceFactor = balanced;
                                reviseBalanceFactor = 0;
                        }
                }
        else
            // no balancing occurs; do not ask previous nodes
                        reviseBalanceFactor = 0;
        }
    // otherwise recursively move right
    else
        {
                AVLInsert(tree->right, newNode, rebalanceCurrNode);
                // check if balanceFactor must be updated.
                if (rebalanceCurrNode)
                {
                        // went right from node that is left heavy. wil;
                        // balance the node. AVL condition OK (case 2)
                        if (tree->balanceFactor == leftheavy)
                        {
                                // scanning right subtree. node heavy on left.
                                // the node will become balanced
                                tree->balanceFactor = balanced;
                                reviseBalanceFactor = 0;
                        }
                        // went right from balanced node. will create
                        // node heavy on the right. AVL condition OK (case 1)
                        else if (tree->balanceFactor == balanced)
                        {
                                // node is balanced; will become heavy on right
                                tree->balanceFactor = rightheavy;
                                reviseBalanceFactor = 1;
                        }
                        // went right from node that is right heavy. will
                        // violate AVL condition; use rotation (case 3)
                        else
                                UpdateRightTree(tree, reviseBalanceFactor);
                }
                else
                        reviseBalanceFactor = 0;
        }
}


void Tree::UpdateLeftTree (TreeNode* &p, int &reviseBalanceFactor)
{
        TreeNode *lc;

        lc = p->Left();                 // left subtree is also heavy
        if (lc->balanceFactor == leftheavy)
        {
                SingleRotateRight(p);
                reviseBalanceFactor = 0;
        }
        // is right subtree heavy?
        else if (lc->balanceFactor == rightheavy)
        {
                // make a double rotation
                DoubleRotateRight(p);
                // root is now balance
                reviseBalanceFactor = 0;
        }
}

void Tree::UpdateRightTree (TreeNode* &p, int &reviseBalanceFactor)
{
        TreeNode *lc;

        lc = p->Right();                        // right subtree is also heavy
        if (lc->balanceFactor == rightheavy)
        {
                SingleRotateLeft(p);
                reviseBalanceFactor = 0;
        }
        // is left subtree heavy?
        else if (lc->balanceFactor == leftheavy)
        {
                // make a double rotation
                DoubleRotateLeft(p);
                // root is now balance
                reviseBalanceFactor = 0;
        }
}

void Tree::SingleRotateRight (TreeNode* &p)
{
        // the left subtree of p is heavy
        TreeNode *lc;

        // assign the left subtree to lc
        lc = p->Left();

        // update the balance factor for parent and left child
        p->balanceFactor = balanced;
        lc->balanceFactor = balanced;

        // any right subtree st of lc must continue as right
        // subtree of lc. do by making it a left subtree of p
        p->left = lc->Right();

        // rotate p (larger node) into right subtree of lc
        // make lc the pivot node
        lc->right = p;
        p = lc;
}

void Tree::SingleRotateLeft (TreeNode* &p)
{
        // the right subtree of p is heavy
        TreeNode *lc;

        // assign the left subtree to lc
        lc = p->Right();

        // update the balance factor for parent and left child
        p->balanceFactor = balanced;
        lc->balanceFactor = balanced;

        // any right subtree st of lc must continue as right
        // subtree of lc. do by making it a left subtree of p
        p->right = lc->Left();

        // rotate p (larger node) into right subtree of lc
        // make lc the pivot node
        lc->left = p;
        p = lc;
}

// double rotation right about node p
void Tree::DoubleRotateRight (TreeNode* &p)
{
        // two subtrees that are rotated
        TreeNode *lc, *np;

        // in the tree, node(lc) <= node(np) < node(p)
        lc = p->Left();                 // lc is left child of parent
        np = lc->Right();               // np is right child of lc

        // update balance factors for p, lc, and np
        if (np->balanceFactor == rightheavy)
        {
                p->balanceFactor = balanced;
                lc->balanceFactor = rightheavy;
        }
        else if (np->balanceFactor == balanced)
        {
                p->balanceFactor = balanced;
                lc->balanceFactor = balanced;
        }
        else
        {
                p->balanceFactor = rightheavy;
                lc->balanceFactor = balanced;
        }
        np->balanceFactor = balanced;

        // before np replaces the parent p, take care of subtrees
        // detach old children and attach new children
        lc->right = np->Left();
        np->left = lc;
        p->left = np->Right();
        np->right = p;
        p = np;
}

void Tree::DoubleRotateLeft (TreeNode* &p)
{
        // two subtrees that are rotated
        TreeNode *lc, *np;

        // in the tree, node(lc) <= node(np) < node(p)
        lc = p->Right();                        // lc is right child of parent
        np = lc->Left();                // np is left child of lc

        // update balance factors for p, lc, and np
        if (np->balanceFactor == leftheavy)
        {
                p->balanceFactor = balanced;
                lc->balanceFactor = leftheavy;
        }
        else if (np->balanceFactor == balanced)
        {
                p->balanceFactor = balanced;
                lc->balanceFactor = balanced;
        }
        else
        {
                p->balanceFactor = leftheavy;
                lc->balanceFactor = balanced;
        }
        np->balanceFactor = balanced;

        // before np replaces the parent p, take care of subtrees
        // detach old children and attach new children
        lc->left = np->Right();
        np->right = lc;
        p->right = np->Left();
        np->left = p;
        p = np;
}

// if item is in the tree, delete it
void Tree::Delete(const int& item)
{
        // DNodePtr = pointer to node D that is deleted
        // PNodePtr = pointer to parent P of node D
        // RNodePtr = pointer to node R that replaces D
        TreeNode *DNodePtr, *PNodePtr, *RNodePtr;

        // search for a node containing data value item. obtain its
        // node address and that of its parent
        if ((DNodePtr = FindNode (item, PNodePtr)) == nullptr)
                return;

        // If D has null pointer, the
        // replacement node is the one on the other branch
        if (DNodePtr->right == nullptr)
                RNodePtr = DNodePtr->left;
        else if (DNodePtr->left == nullptr)
                RNodePtr = DNodePtr->right;
        // Both pointers of DNodePtr are non-null pointers
        else
        {
                // Find and unlink replacement node for D
                // Starting on the left branch of node D,
                // find node whose data value is the largest of all
                // nodes whose values are less than the value in D
                // Unlink the node from the tree

                // PofRNodePtr = pointer to parent of replacement node
                TreeNode *PofRNodePtr = DNodePtr;

                // frist possible replacement is left child D
                RNodePtr = DNodePtr->left;

                // descend down right subtree of the left child of D
                // keeping a record of current node and its parent.
                // when we stop, we have found the replacement
                while (RNodePtr->right != nullptr)
                {
                        PofRNodePtr = RNodePtr;
                        RNodePtr = RNodePtr;
                }

                if (PofRNodePtr == DNodePtr)
                        // left child of deleted node is the replacement
                        // assign right subtree of D to R
                        RNodePtr->right =  DNodePtr->right;
                else
                {
                        // we moved at least one node down a right brance
                        // delete replacement node from tree by assigning
                        // its left branc to its parent
                        PofRNodePtr->right = RNodePtr->left;

                        // put replacement node in place of DNodePtr.
                        RNodePtr->left = DNodePtr->left;
                        RNodePtr->right = DNodePtr->right;
                }
        }

        // complete the link to the parent node
        // deleting the root node. assign new root
        if (PNodePtr == nullptr)
                root = RNodePtr;
        // attach R to the correct branch of P
        else if (DNodePtr->data < PNodePtr->data)
                PNodePtr->left = RNodePtr;
        else
                PNodePtr->right = RNodePtr;

        // delete the node from memory and decrement list size
        FreeTreeNode(DNodePtr);  // this says FirstTreeNode in the book, should be a typo
        size--;
}





// if current node is defined and its data value matches item,
// assign node value to item; otherwise, insert item in tree
void Tree::Update(const int& item)
{
        if (current !=nullptr && current->data == item)
                current->data = item;
        else
                Insert(item, item);
}

// create duplicate of tree t; return the new root
TreeNode *Tree::CopyTree(TreeNode *t)
{
        // variable newnode points at each new node that is
        // created by a call to GetTreeNode and later attached to
        // the new tree. newlptr and newrptr point to the child of
        // newnode and are passed as parameters to GetTreeNode
        TreeNode *newlptr, *newrptr, *newnode;

        // stop the recursive scan when we arrive at an empty tree
        if (t == nullptr)
                return nullptr;

        // CopyTree builds a new tree by scanning the nodes of t.
        // At each node in t, CopyTree checks for a left child. if
        // present it makes a copy of left child or returns a null pointer.
        // the algorithm similarly checks for a right child.
        // CopyTree builds a copy of node using GetTreeNode and
        // appends copy of left and right children to node.

        if (t->Left() !=nullptr)
                newlptr = CopyTree(t->Left());
        else
                newlptr = nullptr;

        if (t->Right() !=nullptr)
                newrptr = CopyTree(t->Right());
        else
                newrptr = nullptr;


        // Build new tree from the bottom up by building the two
        // children and then building the parent
        newnode = GetTreeNode(t->data, newlptr, newrptr);

        // return a pointer to the newly created node
        return newnode;
}


// use the postorder scanning algorithm to traverse the nodes in
// the tree and delete each node at the visit operation
void Tree::DeleteTree(TreeNode *t)
{
  if (t != nullptr) {
    DeleteTree(t->Left());
    DeleteTree(t->Right());
    void *aux = t->GetAuxData();
    if (aux != nullptr) {
      if (DeleteAuxData != nullptr) {
        (*DeleteAuxData)(aux);
      } else {
        delete (TreeNode *) aux;
      }
    }
    FreeTreeNode(t);
  }
}

// call the function DeleteTree to deallocate the nodes. then
// set the root pointer back to a null pointer
void Tree::ClearTree(TreeNode * &t)
{
        DeleteTree(t);
        t = nullptr;               // root now a null pointer
}

// delete all nodes in list
void Tree::ClearList(void)
{
        delete root;
        delete current;
        size = 0;
}

#endif