File: lal_dpd_coul_slater_long.cu

package info (click to toggle)
lammps 20250204%2Bdfsg.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 474,368 kB
  • sloc: cpp: 1,060,070; python: 27,785; ansic: 8,956; f90: 7,254; sh: 6,044; perl: 4,171; fortran: 2,442; xml: 1,714; makefile: 1,352; objc: 238; lisp: 188; yacc: 58; csh: 16; awk: 14; tcl: 6; javascript: 2
file content (519 lines) | stat: -rw-r--r-- 22,257 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
// **************************************************************************
//                                   dpd.cu
//                             -------------------
//                           Eddy BARRAUD (IFPEN/Sorbonne)
//                           Trung Dac Nguyen (U Chicago)
//
//  Device code for acceleration of the dpd/coul/slater/long pair style
//
// __________________________________________________________________________
//    This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
// __________________________________________________________________________
//
//    begin                : May 28, 2024
//    email                : eddy.barraud@outlook.fr
// ***************************************************************************

#if defined(NV_KERNEL) || defined(USE_HIP)
#include "lal_aux_fun1.h"
#ifndef _DOUBLE_DOUBLE
_texture( pos_tex,float4);
_texture( vel_tex,float4);
#else
_texture_2d( pos_tex,int4);
_texture_2d( vel_tex,int4);
#endif
#else
#define pos_tex x_
#define vel_tex v_
#endif

#define EPSILON (numtyp)1.0e-10

//#define _USE_UNIFORM_SARU_LCG
//#define _USE_UNIFORM_SARU_TEA8
//#define _USE_GAUSSIAN_SARU_LCG

#if !defined(_USE_UNIFORM_SARU_LCG) && !defined(_USE_UNIFORM_SARU_TEA8) && !defined(_USE_GAUSSIAN_SARU_LCG)
#define _USE_UNIFORM_SARU_LCG
#endif

// References:
// 1. Y. Afshar, F. Schmid, A. Pishevar, S. Worley, Comput. Phys. Comm. 184 (2013), 1119–1128.
// 2. C. L. Phillips, J. A. Anderson, S. C. Glotzer, Comput. Phys. Comm. 230 (2011), 7191-7201.
// PRNG period = 3666320093*2^32 ~ 2^64 ~ 10^19

#define LCGA 0x4beb5d59 /* Full period 32 bit LCG */
#define LCGC 0x2600e1f7
#define oWeylPeriod 0xda879add /* Prime period 3666320093 */
#define oWeylOffset 0x8009d14b
#define TWO_N32 0.232830643653869628906250e-9f /* 2^-32 */

// specifically implemented for steps = 1; high = 1.0; low = -1.0
// returns uniformly distributed random numbers u in [-1.0;1.0]
// using the inherent LCG, then multiply u with sqrt(3) to "match"
// with a normal random distribution.
// Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12)
// Curly brackets to make variables local to the scope.
#ifdef _USE_UNIFORM_SARU_LCG
#define SQRT3 (numtyp)1.7320508075688772935274463
#define saru(seed1, seed2, seed, timestep, randnum) {                         \
  unsigned int seed3 = seed + timestep;                                       \
  seed3^=(seed1<<7)^(seed2>>6);                                               \
  seed2+=(seed1>>4)^(seed3>>15);                                              \
  seed1^=(seed2<<9)+(seed3<<8);                                               \
  seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1));                               \
  seed2+=0x72BE1579*((seed1<<4)  ^ (seed3>>16));                              \
  seed1^=0x3F38A6ED*((seed3>>5)  ^ (((signed int)seed2)>>22));                \
  seed2+=seed1*seed3;                                                         \
  seed1+=seed3 ^ (seed2>>2);                                                  \
  seed2^=((signed int)seed2)>>17;                                             \
  unsigned int state  = 0x79dedea3*(seed1^(((signed int)seed1)>>14));         \
  unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8);           \
  state  = state + (wstate*(wstate^0xdddf97f5));                              \
  wstate = 0xABCB96F7 + (wstate>>1);                                          \
  state = LCGA*state + LCGC;                                                  \
  wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod);   \
  unsigned int v = (state ^ (state>>26)) + wstate;                            \
  unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7);                      \
  randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0);                        \
}
#endif

// specifically implemented for steps = 1; high = 1.0; low = -1.0
// returns uniformly distributed random numbers u in [-1.0;1.0] using TEA8
// then multiply u with sqrt(3) to "match" with a normal random distribution
// Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12)
#ifdef _USE_UNIFORM_SARU_TEA8
#define SQRT3 (numtyp)1.7320508075688772935274463
#define k0 0xA341316C
#define k1 0xC8013EA4
#define k2 0xAD90777D
#define k3 0x7E95761E
#define delta 0x9e3779b9
#define rounds 8
#define saru(seed1, seed2, seed, timestep, randnum) {                         \
  unsigned int seed3 = seed + timestep;                                       \
  seed3^=(seed1<<7)^(seed2>>6);                                               \
  seed2+=(seed1>>4)^(seed3>>15);                                              \
  seed1^=(seed2<<9)+(seed3<<8);                                               \
  seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1));                               \
  seed2+=0x72BE1579*((seed1<<4)  ^ (seed3>>16));                              \
  seed1^=0x3F38A6ED*((seed3>>5)  ^ (((signed int)seed2)>>22));                \
  seed2+=seed1*seed3;                                                         \
  seed1+=seed3 ^ (seed2>>2);                                                  \
  seed2^=((signed int)seed2)>>17;                                             \
  unsigned int state  = 0x79dedea3*(seed1^(((signed int)seed1)>>14));         \
  unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8);           \
  state  = state + (wstate*(wstate^0xdddf97f5));                              \
  wstate = 0xABCB96F7 + (wstate>>1);                                          \
  unsigned int sum = 0;                                                       \
  for (int i=0; i < rounds; i++) {                                            \
    sum += delta;                                                             \
    state += ((wstate<<4) + k0)^(wstate + sum)^((wstate>>5) + k1);            \
    wstate += ((state<<4) + k2)^(state + sum)^((state>>5) + k3);              \
  }                                                                           \
  unsigned int v = (state ^ (state>>26)) + wstate;                            \
  unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7);                      \
  randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0);                        \
}
#endif

// specifically implemented for steps = 1; high = 1.0; low = -1.0
// returns two uniformly distributed random numbers r1 and r2 in [-1.0;1.0],
// and uses the polar method (Marsaglia's) to transform to a normal random value
// This is used to compared with CPU DPD using RandMars::gaussian()
#ifdef _USE_GAUSSIAN_SARU_LCG
#define saru(seed1, seed2, seed, timestep, randnum) {                         \
  unsigned int seed3 = seed + timestep;                                       \
  seed3^=(seed1<<7)^(seed2>>6);                                               \
  seed2+=(seed1>>4)^(seed3>>15);                                              \
  seed1^=(seed2<<9)+(seed3<<8);                                               \
  seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1));                               \
  seed2+=0x72BE1579*((seed1<<4)  ^ (seed3>>16));                              \
  seed1^=0x3F38A6ED*((seed3>>5)  ^ (((signed int)seed2)>>22));                \
  seed2+=seed1*seed3;                                                         \
  seed1+=seed3 ^ (seed2>>2);                                                  \
  seed2^=((signed int)seed2)>>17;                                             \
  unsigned int state=0x12345678;                                              \
  unsigned int wstate=12345678;                                               \
  state  = 0x79dedea3*(seed1^(((signed int)seed1)>>14));                      \
  wstate = (state + seed2) ^ (((signed int)state)>>8);                        \
  state  = state + (wstate*(wstate^0xdddf97f5));                              \
  wstate = 0xABCB96F7 + (wstate>>1);                                          \
  unsigned int v, s;                                                          \
  numtyp r1, r2, rsq;                                                         \
  while (1) {                                                                 \
    state = LCGA*state + LCGC;                                                \
    wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \
    v = (state ^ (state>>26)) + wstate;                                       \
    s = (signed int)((v^(v>>20))*0x6957f5a7);                                 \
    r1 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0;                                   \
    state = LCGA*state + LCGC;                                                \
    wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \
    v = (state ^ (state>>26)) + wstate;                                       \
    s = (signed int)((v^(v>>20))*0x6957f5a7);                                 \
    r2 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0;                                   \
    rsq = r1 * r1 + r2 * r2;                                                  \
    if (rsq < (numtyp)1.0) break;                                             \
  }                                                                           \
  numtyp fac = ucl_sqrt((numtyp)-2.0*log(rsq)/rsq);                           \
  randnum = r2*fac;                                                           \
}
#endif

__kernel void k_dpd_coul_slater_long(const __global numtyp4 *restrict x_,
                    const __global numtyp4 *restrict extra,
                    const __global numtyp4 *restrict coeff,
                    const int lj_types,
                    const __global numtyp *restrict sp_lj,
                    const __global numtyp *restrict sp_cl_in,
                    const __global numtyp *restrict sp_sqrt,
                    const __global int * dev_nbor,
                    const __global int * dev_packed,
                    __global acctyp3 *restrict ans,
                    __global acctyp *restrict engv,
                    const int eflag, const int vflag, const int inum,
                    const int nbor_pitch,
                    const __global numtyp4 *restrict v_,
                    const __global numtyp4 *restrict cutsq,
                    const numtyp dtinvsqrt, const int seed,
                    const int timestep, const numtyp qqrd2e, 
                    const numtyp g_ewald, const numtyp lamda,
                    const int tstat_only,
                    const int t_per_atom) {
  int tid, ii, offset;
  atom_info(t_per_atom,ii,tid,offset);

  __local numtyp sp_cl[4];
  sp_cl[0]=sp_cl_in[0];
  sp_cl[1]=sp_cl_in[1];
  sp_cl[2]=sp_cl_in[2];
  sp_cl[3]=sp_cl_in[3];

  int n_stride;
  local_allocate_store_charge();

  acctyp3 f;
  f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
  acctyp e_coul, energy, virial[6];
  if (EVFLAG) {
    energy=(acctyp)0;
    e_coul=(acctyp)0;
    for (int i=0; i<6; i++) virial[i]=(acctyp)0;
  }

  if (ii<inum) {
    int i, numj, nbor, nbor_end;
    nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
              n_stride,nbor_end,nbor);

    numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
    int itype=ix.w;
    numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
    int itag=iv.w;

    numtyp qtmp = extra[i].x; // q[i]
    numtyp lamdainv = ucl_recip(lamda);

    numtyp factor_dpd, factor_sqrt;
    for ( ; nbor<nbor_end; nbor+=n_stride) {
      ucl_prefetch(dev_packed+nbor+n_stride);

      int j=dev_packed[nbor];
      factor_dpd = sp_lj[sbmask(j)];
      factor_sqrt = sp_sqrt[sbmask(j)];
      numtyp factor_coul;
      factor_coul = (numtyp)1.0-sp_cl[sbmask(j)];
      j &= NEIGHMASK;

      numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
      int jtype=jx.w;
      numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
      int jtag=jv.w;

      // Compute r12
      numtyp delx = ix.x-jx.x;
      numtyp dely = ix.y-jx.y;
      numtyp delz = ix.z-jx.z;
      numtyp rsq = delx*delx+dely*dely+delz*delz;

      int mtype=itype*lj_types+jtype;

      // cutsq[mtype].x -> global squared cutoff
      if (rsq<cutsq[mtype].x) {
        numtyp r=ucl_sqrt(rsq);
        numtyp force_dpd = (numtyp)0.0;
        numtyp force_coul = (numtyp)0.0;

        // apply DPD force if distance below DPD cutoff
        // cutsq[mtype].y -> DPD squared cutoff
        if (rsq < cutsq[mtype].y && r > EPSILON) {

          numtyp rinv=ucl_recip(r);
          numtyp delvx = iv.x - jv.x;
          numtyp delvy = iv.y - jv.y;
          numtyp delvz = iv.z - jv.z;
          numtyp dot = delx*delvx + dely*delvy + delz*delvz;
          numtyp wd = (numtyp)1.0 - r/coeff[mtype].w;

          unsigned int tag1=itag, tag2=jtag;
          if (tag1 > tag2) {
            tag1 = jtag; tag2 = itag;
          }

          numtyp randnum = (numtyp)0.0;
          saru(tag1, tag2, seed, timestep, randnum);

          // conservative force = a0 * wd, or 0 if tstat only
          // drag force = -gamma * wd^2 * (delx dot delv) / r
          // random force = sigma * wd * rnd * dtinvsqrt;

          if (!tstat_only) force_dpd = coeff[mtype].x*wd;
          force_dpd -= coeff[mtype].y*wd*wd*dot*rinv;
          force_dpd *= factor_dpd;
          force_dpd += factor_sqrt*coeff[mtype].z*wd*randnum*dtinvsqrt;
          force_dpd *=rinv;

          if (EVFLAG && eflag) {
            // unshifted eng of conservative term:
            // evdwl = -a0[itype][jtype]*r * (1.0-0.5*r/cut[itype][jtype]);
            // eng shifted to 0.0 at cutoff
            numtyp e = (numtyp)0.5*coeff[mtype].x*coeff[mtype].w * wd*wd;
            energy += factor_dpd*e;
          }

        }// if cut_dpdsq
      
        // apply Slater electrostatic force if distance below Slater cutoff 
        // and the two species have a slater coeff
        // cutsq[mtype].z -> Coulombic squared cutoff
        if ( cutsq[mtype].z != 0.0 && rsq < cutsq[mtype].z){
          numtyp r2inv=ucl_recip(rsq);
          numtyp _erfc;
          numtyp grij = g_ewald * r;
          numtyp expm2 = ucl_exp(-grij*grij);
          numtyp t = ucl_recip((numtyp)1.0 + EWALD_P*grij);
          _erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
          numtyp prefactor = extra[j].x;
          prefactor *= qqrd2e * cutsq[mtype].z * qtmp/r;
          numtyp rlamdainv = r * lamdainv;
          numtyp exprlmdainv = ucl_exp((numtyp)-2.0*rlamdainv);
          numtyp slater_term = exprlmdainv*((numtyp)1.0 + ((numtyp)2.0*rlamdainv*((numtyp)1.0+rlamdainv)));
          force_coul = prefactor*(_erfc + EWALD_F*grij*expm2-slater_term);
          if (factor_coul > (numtyp)0) force_coul -= factor_coul*prefactor*((numtyp)1.0-slater_term);
          force_coul *= r2inv;

          if (EVFLAG && eflag) {
            numtyp e_slater = ((numtyp)1.0 + rlamdainv)*exprlmdainv;
            numtyp e = prefactor*(_erfc-e_slater);
            if (factor_coul > (numtyp)0) e -= factor_coul*prefactor*((numtyp)1.0 - e_slater);
            e_coul += e;
          }
        } // if cut_coulsq

        numtyp force = force_coul + force_dpd;
        f.x += delx*force;
        f.y += dely*force;
        f.z += delz*force;

        if (EVFLAG && vflag) {
          virial[0] += delx*delx*force;
          virial[1] += dely*dely*force;
          virial[2] += delz*delz*force;
          virial[3] += delx*dely*force;
          virial[4] += delx*delz*force;
          virial[5] += dely*delz*force;
        }
      
      } // if cutsq

    } // for nbor
  } // if ii
  store_answers_q(f,energy,e_coul,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,ans,engv);
}

__kernel void k_dpd_coul_slater_long_fast(const __global numtyp4 *restrict x_,
                         const __global numtyp4 *restrict extra,
                         const __global numtyp4 *restrict coeff_in,
                         const __global numtyp *restrict sp_lj_in,
                         const __global numtyp *restrict sp_cl_in,
                         const __global numtyp *restrict sp_sqrt_in,
                         const __global int * dev_nbor,
                         const __global int * dev_packed,
                         __global acctyp3 *restrict ans,
                         __global acctyp *restrict engv,
                         const int eflag, const int vflag, const int inum,
                         const int nbor_pitch,
                         const __global numtyp4 *restrict v_,
                         const __global numtyp4 *restrict cutsq_in,
                         const numtyp dtinvsqrt, const int seed,
                         const int timestep, const numtyp qqrd2e, 
                         const numtyp g_ewald, const numtyp lamda,
                         const int tstat_only,
                         const int t_per_atom) {
  int tid, ii, offset;
  atom_info(t_per_atom,ii,tid,offset);

  __local numtyp4 coeff[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
  __local numtyp4 cutsq[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
  __local numtyp sp_lj[4];
  __local numtyp sp_sqrt[4];
  /// COUL Init
  __local numtyp sp_cl[4];
  if (tid<4) {
    sp_lj[tid]=sp_lj_in[tid];
    sp_sqrt[tid]=sp_sqrt_in[tid];
    sp_cl[tid]=sp_cl_in[tid];
  }
  if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
    coeff[tid]=coeff_in[tid];
    cutsq[tid]=cutsq_in[tid];
  }

  __syncthreads();
  

  int n_stride;
  local_allocate_store_charge();

  acctyp3 f;
  f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
  acctyp e_coul, energy, virial[6];
  if (EVFLAG) {
    energy=(acctyp)0;
    e_coul=(acctyp)0;
    for (int i=0; i<6; i++) virial[i]=(acctyp)0;
  }

  if (ii<inum) {
    int i, numj, nbor, nbor_end;
    nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
              n_stride,nbor_end,nbor);

    numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
    int iw=ix.w;
    int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
    numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
    int itag=iv.w;

    numtyp qtmp = extra[i].x; // q[i]
    numtyp lamdainv = ucl_recip(lamda);

    numtyp factor_dpd, factor_sqrt;
    for ( ; nbor<nbor_end; nbor+=n_stride) {
      ucl_prefetch(dev_packed+nbor+n_stride);

      int j=dev_packed[nbor];
      factor_dpd = sp_lj[sbmask(j)];
      factor_sqrt = sp_sqrt[sbmask(j)];
      numtyp factor_coul;
      factor_coul = (numtyp)1.0-sp_cl[sbmask(j)];
      j &= NEIGHMASK;

      numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
      numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
      int jtag=jv.w;

      // Compute r12
      numtyp delx = ix.x-jx.x;
      numtyp dely = ix.y-jx.y;
      numtyp delz = ix.z-jx.z;
      numtyp rsq = delx*delx+dely*dely+delz*delz;

      int mtype=itype+jx.w;
      
      /// cutsq.x = cutsq, cutsq.y = cut_dpdsq, cutsq.z = cut_slatersq
      if (rsq<cutsq[mtype].x) {
        numtyp r=ucl_sqrt(rsq);
        numtyp force_dpd = (numtyp)0.0;
        numtyp force_coul = (numtyp)0.0;

        // apply DPD force if distance below DPD cutoff
        // cutsq[mtype].y -> DPD squared cutoff
        if (rsq < cutsq[mtype].y && r > EPSILON) {

          numtyp rinv=ucl_recip(r);
          numtyp delvx = iv.x - jv.x;
          numtyp delvy = iv.y - jv.y;
          numtyp delvz = iv.z - jv.z;
          numtyp dot = delx*delvx + dely*delvy + delz*delvz;
          numtyp wd = (numtyp)1.0 - r/coeff[mtype].w;

          unsigned int tag1=itag, tag2=jtag;
          if (tag1 > tag2) {
            tag1 = jtag; tag2 = itag;
          }

          numtyp randnum = (numtyp)0.0;
          saru(tag1, tag2, seed, timestep, randnum);

          // conservative force = a0 * wd, or 0 if tstat only
          // drag force = -gamma * wd^2 * (delx dot delv) / r
          // random force = sigma * wd * rnd * dtinvsqrt;
          /// coeff.x = a0, coeff.y = gamma, coeff.z = sigma, coeff.w = cut_dpd

          if (!tstat_only) force_dpd = coeff[mtype].x*wd;
          force_dpd -= coeff[mtype].y*wd*wd*dot*rinv;
          force_dpd *= factor_dpd;
          force_dpd += factor_sqrt*coeff[mtype].z*wd*randnum*dtinvsqrt;
          force_dpd *=rinv;

          if (EVFLAG && eflag) {
            // unshifted eng of conservative term:
            // evdwl = -a0[itype][jtype]*r * (1.0-0.5*r/cut[itype][jtype]);
            // eng shifted to 0.0 at cutoff
            numtyp e = (numtyp)0.5*coeff[mtype].x*coeff[mtype].w * wd*wd;
            energy += factor_dpd*e;
          }

        }// if cut_dpdsq
      
        // apply Slater electrostatic force if distance below Slater cutoff 
        // and the two species have a slater coeff
        // cutsq[mtype].z -> Coulombic squared cutoff
        if ( cutsq[mtype].z != 0.0 && rsq < cutsq[mtype].z){
          numtyp r2inv=ucl_recip(rsq);
          numtyp _erfc;
          numtyp grij = g_ewald * r;
          numtyp expm2 = ucl_exp(-grij*grij);
          numtyp t = ucl_recip((numtyp)1.0 + EWALD_P*grij);
          _erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
          numtyp prefactor = extra[j].x;
          prefactor *= qqrd2e * cutsq[mtype].z * qtmp/r;
          numtyp rlamdainv = r * lamdainv;
          numtyp exprlmdainv = ucl_exp((numtyp)-2.0*rlamdainv);
          numtyp slater_term = exprlmdainv*((numtyp)1.0 + ((numtyp)2.0*rlamdainv*((numtyp)1.0+rlamdainv)));
          force_coul = prefactor*(_erfc + EWALD_F*grij*expm2-slater_term);
          if (factor_coul > (numtyp)0) force_coul -= factor_coul*prefactor*((numtyp)1.0-slater_term);
          force_coul *= r2inv;

          if (EVFLAG && eflag) {
            numtyp e_slater = ((numtyp)1.0 + rlamdainv)*exprlmdainv;
            numtyp e_sf = prefactor*(_erfc-e_slater);
            if (factor_coul > (numtyp)0) e_sf -= factor_coul*prefactor*((numtyp)1.0 - e_slater);
            e_coul += e_sf;
          }
        } // if cut_coulsq

        numtyp force = force_coul + force_dpd;
        f.x += delx*force;
        f.y += dely*force;
        f.z += delz*force;

        if (EVFLAG && vflag) {
          virial[0] += delx*delx*force;
          virial[1] += dely*dely*force;
          virial[2] += delz*delz*force;
          virial[3] += delx*dely*force;
          virial[4] += delx*delz*force;
          virial[5] += dely*delz*force;
        }
      
      } // if cutsq

    } // for nbor
  } // if ii
  store_answers_q(f,energy,e_coul,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,ans,engv);
}