File: matplotlib_plot.py

package info (click to toggle)
lammps 20250204%2Bdfsg.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 474,368 kB
  • sloc: cpp: 1,060,070; python: 27,785; ansic: 8,956; f90: 7,254; sh: 6,044; perl: 4,171; fortran: 2,442; xml: 1,714; makefile: 1,352; objc: 238; lisp: 188; yacc: 58; csh: 16; awk: 14; tcl: 6; javascript: 2
file content (90 lines) | stat: -rwxr-xr-x 2,234 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python -i
# preceding line should have path for Python on your machine

# matplotlib_plot.py
# Purpose: plot Temp of running LAMMPS simulation via matplotlib
# Syntax:  plot.py in.lammps Nfreq Nsteps compute-ID
#          in.lammps = LAMMPS input script
#          Nfreq = plot data point every this many steps
#          Nsteps = run for this many steps
#          compute-ID = ID of compute that calculates temperature
#                       (or any other scalar quantity)

from __future__ import print_function
import sys
import matplotlib.pyplot as plt

# parse command line

argv = sys.argv
if len(argv) != 5:
  print("Syntax: plot.py in.lammps Nfreq Nsteps compute-ID")
  sys.exit()

infile = sys.argv[1]
nfreq = int(sys.argv[2])
nsteps = int(sys.argv[3])
compute = sys.argv[4]

me = 0
# uncomment this if running in parallel via mpi4py
#from mpi4py import MPI
#me = MPI.COMM_WORLD.Get_rank()
#nprocs = MPI.COMM_WORLD.Get_size()

from lammps import lammps
lmp = lammps()

# run infile all at once
# assumed to have no run command in it

lmp.file(infile)
lmp.command("thermo %d" % nfreq)

# initial 0-step run to generate initial 1-point plot

lmp.command("run 0 pre yes post no")
value = lmp.extract_compute(compute,0,0)
ntimestep = 0
xaxis = [ntimestep]
yaxis = [value]

# create matplotlib plot
# just proc 0 handles plotting

if me == 0:
  fig = plt.figure()
  line, = plt.plot(xaxis, yaxis)
  plt.xlim([0, nsteps])
  plt.title(compute)
  plt.xlabel("Timestep")
  plt.ylabel("Temperature")
  plt.show(block=False)

# run nfreq steps at a time w/out pre/post, query compute, refresh plot

while ntimestep < nsteps:
  lmp.command("run %d pre no post no" % nfreq)
  ntimestep += nfreq
  value = lmp.extract_compute(compute,0,0)
  xaxis.append(ntimestep)
  yaxis.append(value)
  if me == 0:
    line.set_xdata(xaxis)
    line.set_ydata(yaxis)
    ax = plt.gca()
    ax.relim()
    ax.autoscale_view(True, True, True)
    plt.pause(0.001)


lmp.command("run 0 pre no post yes")

# uncomment if running in parallel via mpi4py
#print("Proc %d out of %d procs has" % (me,nprocs), lmp)

if me == 0:
  if sys.version_info[0] == 3:
      input("Press Enter to exit...")
  else:
      raw_input("Press Enter to exit...")