File: dump.py

package info (click to toggle)
lammps 20250204%2Bdfsg.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 474,368 kB
  • sloc: cpp: 1,060,070; python: 27,785; ansic: 8,956; f90: 7,254; sh: 6,044; perl: 4,171; fortran: 2,442; xml: 1,714; makefile: 1,352; objc: 238; lisp: 188; yacc: 58; csh: 16; awk: 14; tcl: 6; javascript: 2
file content (1255 lines) | stat: -rw-r--r-- 41,394 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
# Pizza.py toolkit, https://lammps.github.io/pizza
# LAMMPS development team: developers@lammps.org
#
# Copyright (2005) Sandia Corporation.  Under the terms of Contract
# DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
# certain rights in this software.  This software is distributed under
# the GNU General Public License.

# for python3 compatibility

from __future__ import print_function

# dump tool

oneline = "Read, write, manipulate dump files and particle attributes"

docstr = """
d = dump("dump.one")              read in one or more dump files
d = dump("dump.1 dump.2.gz")      can be gzipped
d = dump("dump.*")                wildcard expands to multiple files
d = dump("dump.*",0)              two args = store filenames, but don't read

  incomplete and duplicate snapshots are deleted
  if atoms have 5 or 8 columns, assign id,type,x,y,z (ix,iy,iz)
  atoms will be unscaled if stored in files as scaled

time = d.next()                   read next snapshot from dump files

  used with 2-argument constructor to allow reading snapshots one-at-a-time
  snapshot will be skipped only if another snapshot has same time stamp
  return time stamp of snapshot read
  return -1 if no snapshots left or last snapshot is incomplete
  no column name assignment or unscaling is performed

d.map(1,"id",3,"x")               assign names to atom columns (1-N)

  not needed if dump file is self-describing

d.tselect.all()                   select all timesteps
d.tselect.one(N)                  select only timestep N
d.tselect.one(N1,N2,N3)           select only timestep N1,N2,N3
d.tselect.none()                  deselect all timesteps
d.tselect.skip(M)                 select every Mth step
d.tselect.test("$t >= 100 and $t < 10000")      select matching timesteps
d.delete()                        delete non-selected timesteps

  selecting a timestep also selects all atoms in the timestep
  skip() and test() only select from currently selected timesteps
  test() uses a Python Boolean expression with $t for timestep value
    Python comparison syntax: == != < > <= >= and or

d.aselect.all()                               select all atoms in all steps
d.aselect.all(N)                              select all atoms in one step
d.aselect.test("$id > 100 and $type == 2")    select match atoms in all steps
d.aselect.test("$id > 100 and $type == 2",N)  select matching atoms in one step

  all() with no args selects atoms from currently selected timesteps
  test() with one arg selects atoms from currently selected timesteps
  test() sub-selects from currently selected atoms
  test() uses a Python Boolean expression with $ for atom attributes
    Python comparison syntax: == != < > <= >= and or
    $name must end with a space

d.write("file")                    write selected steps/atoms to dump file
d.write("file",head,app)           write selected steps/atoms to dump file
d.scatter("tmp")                   write selected steps/atoms to multiple files

  write() can be specified with 2 additional flags
    headd = 0/1 for no/yes snapshot header, app = 0/1 for write vs append
  scatter() files are given timestep suffix: e.g. tmp.0, tmp.100, etc

d.scale()                          scale x,y,z to 0-1 for all timesteps
d.scale(100)                       scale atom coords for timestep N
d.unscale()                        unscale x,y,z to box size to all timesteps
d.unscale(1000)                    unscale atom coords for timestep N
d.wrap()                           wrap x,y,z into periodic box via ix,iy,iz
d.unwrap()                         unwrap x,y,z out of box via ix,iy,iz
d.owrap("other")                   wrap x,y,z to same image as another atom
d.sort()                           sort atoms by atom ID in all selected steps
d.sort("x")                        sort atoms by column value in all steps
d.sort(1000)                       sort atoms in timestep N

  scale(), unscale(), wrap(), unwrap(), owrap() operate on all steps and atoms
  wrap(), unwrap(), owrap() require ix,iy,iz be defined
  owrap() requires a column be defined which contains an atom ID
    name of that column is the argument to owrap()
    x,y,z for each atom is wrapped to same image as the associated atom ID
    useful for wrapping all molecule's atoms the same so it is contiguous

m1,m2 = d.minmax("type")               find min/max values for a column
d.set("$ke = $vx * $vx + $vy * $vy")   set a column to a computed value
d.setv("type",vector)                  set a column to a vector of values
d.spread("ke",N,"color")               2nd col = N ints spread over 1st col
d.clone(1000,"color")                  clone timestep N values to other steps

  minmax() operates on selected timesteps and atoms
  set() operates on selected timesteps and atoms
    left hand side column is created if necessary
    left-hand side column is unset or unchanged for non-selected atoms
    equation is in Python syntax
    use $ for column names, $name must end with a space
  setv() operates on selected timesteps and atoms
    if column label does not exist, column is created
    values in vector are assigned sequentially to atoms, so may want to sort()
    length of vector must match # of selected atoms
  spread() operates on selected timesteps and atoms
    min and max are found for 1st specified column across all selected atoms
    atom's value is linear mapping (1-N) between min and max
    that is stored in 2nd column (created if needed)
    useful for creating a color map
  clone() operates on selected timesteps and atoms
    values at every timestep are set to value at timestep N for that atom ID
    useful for propagating a color map

t = d.time()                       return vector of selected timestep values
fx,fy,... = d.atom(100,"fx","fy",...)   return vector(s) for atom ID N
fx,fy,... = d.vecs(1000,"fx","fy",...)  return vector(s) for timestep N

  atom() returns vectors with one value for each selected timestep
  vecs() returns vectors with one value for each selected atom in the timestep

index,time,flag = d.iterator(0/1)          loop over dump snapshots
time,box,atoms,bonds,tris = d.viz(index)   return list of viz objects
d.atype = "color"                          set column returned as "type" by viz
d.extra("dump.bond")                       read bond list from dump file
d.extra(data)                              extract bond/tri/line list from data

  iterator() loops over selected timesteps
  iterator() called with arg = 0 first time, with arg = 1 on subsequent calls
    index = index within dump object (0 to # of snapshots)
    time = timestep value
    flag = -1 when iteration is done, 1 otherwise
  viz() returns info for selected atoms for specified timestep index
    time = timestep value
    box = [xlo,ylo,zlo,xhi,yhi,zhi]
    atoms = id,type,x,y,z for each atom as 2d array
    bonds = id,type,x1,y1,z1,x2,y2,z2,t1,t2 for each bond as 2d array
      if bonds() was used to define bonds, else empty list
    tris = id,type,x1,y1,z1,x2,y2,z2,x3,y3,z3,nx,ny,nz for each tri as 2d array
      if extra() was used to define tris, else empty list
    lines = id,type,x1,y1,z1,x2,y2,z2 for each line as 2d array
      if extra() was used to define lines, else empty list
  atype is column name viz() will return as atom type (def = "type")
  extra() stores list of bonds/tris/lines to return each time viz() is called
"""

# History
#   8/05, Steve Plimpton (SNL): original version
#   12/09, David Hart (SNL): allow use of NumPy or Numeric
#   03/17, Richard Berger (Temple U): improve Python 3 compatibility,
#                                     simplify read_snapshot by using reshape
#   08/22, Axel Kohlmeyer (Temple U): remove Numeric, more Python 2/3 compatibility

# ToDo list
#   try to optimize this line in read_snap: words += f.readline().split()
#   allow $name in aselect.test() and set() to end with non-space
#   should next() snapshot be auto-unscaled ?

# Variables
#   flist = list of dump file names
#   increment = 1 if reading snapshots one-at-a-time
#   nextfile = which file to read from via next()
#   eof = ptr into current file for where to read via next()
#   nsnaps = # of snapshots
#   nselect = # of selected snapshots
#   snaps = list of snapshots
#   names = dictionary of column names:
#     key = "id", value = column # (0 to M-1)
#   tselect = class for time selection
#   aselect = class for atom selection
#   atype = name of vector used as atom type by viz extract
#   bondflag = 0 if no bonds, 1 if they are defined statically
#   bondlist = static list of bonds to viz() return for all snapshots
#     only a list of atom pairs, coords have to be created for each snapshot
#   triflag = 0 if no tris, 1 if they are defined statically, 2 if dynamic
#   trilist = static list of tris to return via viz() for all snapshots
#   lineflag = 0 if no lines, 1 if they are defined statically
#   linelist = static list of lines to return via viz() for all snapshots
#   Snap = one snapshot
#     time = time stamp
#     tselect = 0/1 if this snapshot selected
#     natoms = # of atoms
#     nselect = # of selected atoms in this snapshot
#     aselect[i] = 0/1 for each atom
#     xlo,xhi,ylo,yhi,zlo,zhi = box bounds (float)
#     atoms[i][j] = 2d array of floats, i = 0 to natoms-1, j = 0 to ncols-1

# Imports and external programs

import sys, re, glob, types
from os import popen
from math import *             # any function could be used by set()

import numpy as np

try: from DEFAULTS import PIZZA_GUNZIP
except: PIZZA_GUNZIP = "gunzip"

# --------------------------------------------------------------------
# wrapper to convert old style comparision function to key function

def cmp2key(oldcmp):
    class keycmp:
      def __init__(self, obj, *args):
        self.obj = obj
      def __lt__(self, other):
        return oldcmp(self.obj,other.obj) < 0
      def __gt__(self, other):
        return oldcmp(self.obj,other.obj) > 0
      def __eq__(self, other):
        return oldcmp(self.obj,other.obj) == 0
    return keycmp

# Class definition

class dump:

  # --------------------------------------------------------------------

  def __init__(self,*list):
    self.snaps = []
    self.nsnaps = self.nselect = 0
    self.names = {}
    self.tselect = tselect(self)
    self.aselect = aselect(self)
    self.atype = "type"
    self.bondflag = 0
    self.bondlist = []
    self.triflag = 0
    self.trilist = []
    self.triobj = 0
    self.lineflag = 0
    self.linelist = []

    # flist = list of all dump file names

    words = list[0].split()
    self.flist = []
    for word in words: self.flist += glob.glob(word)
    if len(self.flist) == 0 and len(list) == 1:
      raise Exception("no dump file specified")

    if len(list) == 1:
      self.increment = 0
      self.read_all()
    else:
      self.increment = 1
      self.nextfile = 0
      self.eof = 0

  # --------------------------------------------------------------------

  def read_all(self):

    # read all snapshots from each file
    # test for gzipped files

    for file in self.flist:
      if file[-3:] == ".gz":
        f = popen("%s -c %s" % (PIZZA_GUNZIP,file),'r')
      else: f = open(file)

      snap = self.read_snapshot(f)
      while snap:
        self.snaps.append(snap)
        print(snap.time,end=' ')
        sys.stdout.flush()
        snap = self.read_snapshot(f)

      f.close()
    print()

    # sort entries by timestep, cull duplicates

    self.snaps.sort(key=cmp2key(self.compare_time))
    self.cull()
    self.nsnaps = len(self.snaps)
    print("read %d snapshots" % self.nsnaps)

    # select all timesteps and atoms

    self.tselect.all()

    # set default names for atom columns if file wasn't self-describing

    if len(self.snaps) == 0:
      print("no column assignments made")
    elif len(self.names):
      print("assigned columns:",self.names2str())
    elif self.snaps[0].atoms is None:
      print("no column assignments made")
    elif len(self.snaps[0].atoms[0]) == 5:
      self.map(1,"id",2,"type",3,"x",4,"y",5,"z")
      print("assigned columns:",self.names2str())
    elif len(self.snaps[0].atoms[0]) == 8:
      self.map(1,"id",2,"type",3,"x",4,"y",5,"z",6,"ix",7,"iy",8,"iz")
      print("assigned columns:",self.names2str())
    else:
      print("no column assignments made")

    # if snapshots are scaled, unscale them

    if ("x" not in self.names) or \
       ("y" not in self.names) or \
       ("z" not in self.names):
      print("no unscaling could be performed")
    elif self.nsnaps > 0:
      if self.scaled(self.nsnaps-1): self.unscale()
      else: print("dump is already unscaled")

  # --------------------------------------------------------------------
  # read next snapshot from list of files

  def next(self):

    if not self.increment: raise Exception("cannot read incrementally")

    # read next snapshot in current file using eof as pointer
    # if fail, try next file
    # if new snapshot time stamp already exists, read next snapshot

    while True:
      f = open(self.flist[self.nextfile],'r')
      f.seek(self.eof)
      snap = self.read_snapshot(f)
      if not snap:
        self.nextfile += 1
        if self.nextfile == len(self.flist): return -1
        f.close()
        self.eof = 0
        continue
      self.eof = f.tell()
      f.close()
      try:
        self.findtime(snap.time)
        continue
      except: break

    # select the new snapshot with all its atoms

    self.snaps.append(snap)
    snap = self.snaps[self.nsnaps]
    snap.tselect = 1
    snap.nselect = snap.natoms
    for i in range(snap.natoms): snap.aselect[i] = 1
    self.nsnaps += 1
    self.nselect += 1

    return snap.time

  # --------------------------------------------------------------------
  # read a single snapshot from file f
  # return snapshot or 0 if failed
  # assign column names if not already done and file is self-describing
  # convert xs,xu to x

  def read_snapshot(self,f):
    try:
      snap = Snap()
      snap.units = 'unknown'
      snap.stime = -1.0
      # read until hitting next "TIMESTEP" item
      while True:
        try:
          item = f.readline().split()
          if item[0] == 'ITEM:' and item[1] == 'UNITS':
            snap.units = f.readline().split()[0]
          if item[0] == 'ITEM:' and item[1] == 'TIME':
            snap.time = f.readline().split()[0]
          if item[0] == 'ITEM:' and item[1] == 'TIMESTEP':
            break
        except:
          return

      snap.time = int(f.readline().split()[0])    # just grab 1st field
      item = f.readline()
      snap.natoms = int(f.readline())

      snap.aselect = np.zeros(snap.natoms)

      item = f.readline()
      words = f.readline().split()
      snap.xlo,snap.xhi = float(words[0]),float(words[1])
      words = f.readline().split()
      snap.ylo,snap.yhi = float(words[0]),float(words[1])
      words = f.readline().split()
      snap.zlo,snap.zhi = float(words[0]),float(words[1])

      item = f.readline()
      if len(self.names) == 0:
        words = item.split()[2:]
        if len(words):
          for i in range(len(words)):
            if words[i] == "xs" or words[i] == "xu":
              self.names["x"] = i
            elif words[i] == "ys" or words[i] == "yu":
              self.names["y"] = i
            elif words[i] == "zs" or words[i] == "zu":
              self.names["z"] = i
            else: self.names[words[i]] = i

      if snap.natoms:
        words = f.readline().split()
        ncol = len(words)
        for i in range(1,snap.natoms):
          words += f.readline().split()
        floats = map(float,words)
        atom_data = np.array(list(floats),float)

        snap.atoms = atom_data.reshape((snap.natoms, ncol))
      else:
        snap.atoms = None
      return snap
    except:
      return None

  # --------------------------------------------------------------------
  # decide if snapshot i is scaled/unscaled from coords of first and last atom

  def scaled(self,i):
    ix = self.names["x"]
    iy = self.names["y"]
    iz = self.names["z"]
    natoms = self.snaps[i].natoms
    if natoms == 0: return 0
    x1 = self.snaps[i].atoms[0][ix]
    y1 = self.snaps[i].atoms[0][iy]
    z1 = self.snaps[i].atoms[0][iz]
    x2 = self.snaps[i].atoms[natoms-1][ix]
    y2 = self.snaps[i].atoms[natoms-1][iy]
    z2 = self.snaps[i].atoms[natoms-1][iz]
    if x1 >= -0.1 and x1 <= 1.1 and y1 >= -0.1 and y1 <= 1.1 and \
       z1 >= -0.1 and z1 <= 1.1 and x2 >= -0.1 and x2 <= 1.1 and \
       y2 >= -0.1 and y2 <= 1.1 and z2 >= -0.1 and z2 <= 1.1:
      return 1
    else: return 0

  # --------------------------------------------------------------------
  # map atom column names

  def map(self,*pairs):
    if len(pairs) % 2 != 0:
      raise Exception("dump map() requires pairs of mappings")
    for i in range(0,len(pairs),2):
      j = i + 1
      self.names[pairs[j]] = pairs[i]-1

  # delete unselected snapshots

  # --------------------------------------------------------------------

  def delete(self):
    ndel = i = 0
    while i < self.nsnaps:
      if not self.snaps[i].tselect:
        del self.snaps[i]
        self.nsnaps -= 1
        ndel += 1
      else: i += 1
    print("%d snapshots deleted" % ndel)
    print("%d snapshots remaining" % self.nsnaps)

  # --------------------------------------------------------------------
  # scale coords to 0-1 for all snapshots or just one

  def scale(self,*list):
    if len(list) == 0:
      print("Scaling dump ...")
      x = self.names["x"]
      y = self.names["y"]
      z = self.names["z"]
      for snap in self.snaps: self.scale_one(snap,x,y,z)
    else:
      i = self.findtime(list[0])
      x = self.names["x"]
      y = self.names["y"]
      z = self.names["z"]
      self.scale_one(self.snaps[i],x,y,z)

  # --------------------------------------------------------------------

  def scale_one(self,snap,x,y,z):
    xprdinv = 1.0 / (snap.xhi - snap.xlo)
    yprdinv = 1.0 / (snap.yhi - snap.ylo)
    zprdinv = 1.0 / (snap.zhi - snap.zlo)
    atoms = snap.atoms
    atoms[:,x] = (atoms[:,x] - snap.xlo) * xprdinv
    atoms[:,y] = (atoms[:,y] - snap.ylo) * yprdinv
    atoms[:,z] = (atoms[:,z] - snap.zlo) * zprdinv

  # --------------------------------------------------------------------
  # unscale coords from 0-1 to box size for all snapshots or just one

  def unscale(self,*list):
    if len(list) == 0:
      print("Unscaling dump ...")
      x = self.names["x"]
      y = self.names["y"]
      z = self.names["z"]
      for snap in self.snaps: self.unscale_one(snap,x,y,z)
    else:
      i = self.findtime(list[0])
      x = self.names["x"]
      y = self.names["y"]
      z = self.names["z"]
      self.unscale_one(self.snaps[i],x,y,z)

  # --------------------------------------------------------------------

  def unscale_one(self,snap,x,y,z):
    xprd = snap.xhi - snap.xlo
    yprd = snap.yhi - snap.ylo
    zprd = snap.zhi - snap.zlo
    atoms = snap.atoms
    atoms[:,x] = snap.xlo + atoms[:,x]*xprd
    atoms[:,y] = snap.ylo + atoms[:,y]*yprd
    atoms[:,z] = snap.zlo + atoms[:,z]*zprd

  # --------------------------------------------------------------------
  # wrap coords from outside box to inside

  def wrap(self):
    print("Wrapping dump ...")

    x = self.names["x"]
    y = self.names["y"]
    z = self.names["z"]
    ix = self.names["ix"]
    iy = self.names["iy"]
    iz = self.names["iz"]

    for snap in self.snaps:
      xprd = snap.xhi - snap.xlo
      yprd = snap.yhi - snap.ylo
      zprd = snap.zhi - snap.zlo
      atoms = snap.atoms
      atoms[:,x] -= atoms[:,ix]*xprd
      atoms[:,y] -= atoms[:,iy]*yprd
      atoms[:,z] -= atoms[:,iz]*zprd

  # --------------------------------------------------------------------
  # unwrap coords from inside box to outside

  def unwrap(self):
    print("Unwrapping dump ...")

    x = self.names["x"]
    y = self.names["y"]
    z = self.names["z"]
    ix = self.names["ix"]
    iy = self.names["iy"]
    iz = self.names["iz"]

    for snap in self.snaps:
      xprd = snap.xhi - snap.xlo
      yprd = snap.yhi - snap.ylo
      zprd = snap.zhi - snap.zlo
      atoms = snap.atoms
      atoms[:,x] += atoms[:,ix]*xprd
      atoms[:,y] += atoms[:,iy]*yprd
      atoms[:,z] += atoms[:,iz]*zprd

  # --------------------------------------------------------------------
  # wrap coords to same image as atom ID stored in "other" column

  def owrap(self,other):
    print("Wrapping to other ...")

    id = self.names["id"]
    x = self.names["x"]
    y = self.names["y"]
    z = self.names["z"]
    ix = self.names["ix"]
    iy = self.names["iy"]
    iz = self.names["iz"]
    iother = self.names[other]

    for snap in self.snaps:
      xprd = snap.xhi - snap.xlo
      yprd = snap.yhi - snap.ylo
      zprd = snap.zhi - snap.zlo
      atoms = snap.atoms
      ids = {}
      for i in range(snap.natoms):
        ids[atoms[i][id]] = i
      for i in range(snap.natoms):
        j = ids[atoms[i][iother]]
        atoms[i][x] += (atoms[i][ix]-atoms[j][ix])*xprd
        atoms[i][y] += (atoms[i][iy]-atoms[j][iy])*yprd
        atoms[i][z] += (atoms[i][iz]-atoms[j][iz])*zprd

  # --------------------------------------------------------------------
  # convert column names assignment to a string, in column order

  def names2str(self):
    ncol = len(self.snaps[0].atoms[0])
    pairs = self.names.items()
    str = ""
    for i in range(ncol):
      for k,v in pairs:
        if v == i: str += k + ' '
    return str

  # --------------------------------------------------------------------
  # sort atoms by atom ID in all selected timesteps by default
  # if arg = string, sort all steps by that column
  # if arg = numeric, sort atoms in single step

  def sort(self,*list):
    if len(list) == 0:
      print("Sorting selected snapshots ...")
      id = self.names["id"]
      for snap in self.snaps:
        if snap.tselect: self.sort_one(snap,id)
    elif type(list[0]) is types.StringType:
      print("Sorting selected snapshots by %s ..." % list[0])
      id = self.names[list[0]]
      for snap in self.snaps:
        if snap.tselect: self.sort_one(snap,id)
    else:
      i = self.findtime(list[0])
      id = self.names["id"]
      self.sort_one(self.snaps[i],id)

  # --------------------------------------------------------------------
  # sort a single snapshot by ID column

  def sort_one(self,snap,id):
    atoms = snap.atoms
    ids = atoms[:,id]
    ordering = np.argsort(ids)
    for i in range(len(atoms[0])):
      atoms[:,i] = np.take(atoms[:,i],ordering)

  # --------------------------------------------------------------------
  # write a single dump file from current selection

  def write(self,file,header=1,append=0):
    if len(self.snaps): namestr = self.names2str()
    if not append: f = open(file,"w")
    else: f = open(file,"a")
    for snap in self.snaps:
      if not snap.tselect: continue
      print(snap.time,end=' ')
      sys.stdout.flush()

      if header:
        print("ITEM: TIMESTEP",file=f)
        print(snap.time,file=f)
        print("ITEM: NUMBER OF ATOMS",file=f)
        print(snap.nselect,file=f)
        print("ITEM: BOX BOUNDS",file=f)
        print(snap.xlo,snap.xhi,file=f)
        print(snap.ylo,snap.yhi,file=f)
        print(snap.zlo,snap.zhi,file=f)
        print("ITEM: ATOMS",namestr,file=f)

      atoms = snap.atoms
      nvalues = len(atoms[0])
      keys = dict()
      for pair in self.names.items():
        keys[pair[1]] = pair[0]
      for i in range(snap.natoms):
        if not snap.aselect[i]: continue
        line = ""
        for j in range(nvalues):
          if keys[j] == 'id' or keys[j] == 'type' or keys[j] == 'mol':
            line += str(int(atoms[i][j])) + " "
          else:
            line += str(atoms[i][j]) + " "
        print(line,file=f)
    f.close()
    print("\n%d snapshots" % self.nselect)

  # --------------------------------------------------------------------
  # write one dump file per snapshot from current selection

  def scatter(self,root):
    if len(self.snaps): namestr = self.names2str()
    for snap in self.snaps:
      if not snap.tselect: continue
      print(snap.time,end=' ')
      sys.stdout.flush()

      file = root + "." + str(snap.time)
      f = open(file,"w")
      print("ITEM: TIMESTEP",file=f)
      print(snap.time,file=f)
      print("ITEM: NUMBER OF ATOMS",file=f)
      print(snap.nselect,file=f)
      print("ITEM: BOX BOUNDS",file=f)
      print(snap.xlo,snap.xhi,file=f)
      print(snap.ylo,snap.yhi,file=f)
      print(snap.zlo,snap.zhi,file=f)
      print("ITEM: ATOMS",namestr,file=f)

      atoms = snap.atoms
      nvalues = len(atoms[0])
      for i in range(snap.natoms):
        if not snap.aselect[i]: continue
        line = ""
        for j in range(nvalues):
          if (j < 2):
            line += str(int(atoms[i][j])) + " "
          else:
            line += str(atoms[i][j]) + " "
        print(line,file=f)
      f.close()
    print("\n%d snapshots" % self.nselect)

  # --------------------------------------------------------------------
  # find min/max across all selected snapshots/atoms for a particular column

  def minmax(self,colname):
    icol = self.names[colname]
    min = 1.0e20
    max = -min
    for snap in self.snaps:
      if not snap.tselect: continue
      atoms = snap.atoms
      for i in range(snap.natoms):
        if not snap.aselect[i]: continue
        if atoms[i][icol] < min: min = atoms[i][icol]
        if atoms[i][icol] > max: max = atoms[i][icol]
    return (min,max)

  # --------------------------------------------------------------------
  # set a column value via an equation for all selected snapshots

  def set(self,eq):
    print("Setting ...")
    pattern = "\$\w*"
    list = re.findall(pattern,eq)

    lhs = list[0][1:]
    if not lhs in self.names:
      self.newcolumn(lhs)

    for item in list:
      name = item[1:]
      column = self.names[name]
      insert = "snap.atoms[i][%d]" % (column)
      eq = eq.replace(item,insert)
    ceq = compile(eq,'<string>','single')

    for snap in self.snaps:
      if not snap.tselect: continue
      for i in range(snap.natoms):
        if snap.aselect[i]: exec(ceq)

  # --------------------------------------------------------------------
  # set a column value via an input vec for all selected snapshots/atoms

  def setv(self,colname,vec):
    print("Setting ...")
    if not colname in self.names:
      self.newcolumn(colname)
    icol = self.names[colname]

    for snap in self.snaps:
      if not snap.tselect: continue
      if snap.nselect != len(vec):
        raise Exception("vec length does not match # of selected atoms")
      atoms = snap.atoms
      m = 0
      for i in range(snap.natoms):
        if snap.aselect[i]:
          atoms[i][icol] = vec[m]
          m += 1

  # --------------------------------------------------------------------
  # clone value in col across selected timesteps for atoms with same ID

  def clone(self,nstep,col):
    istep = self.findtime(nstep)
    icol = self.names[col]
    id = self.names["id"]
    ids = {}
    for i in range(self.snaps[istep].natoms):
      ids[self.snaps[istep].atoms[i][id]] = i
    for snap in self.snaps:
      if not snap.tselect: continue
      atoms = snap.atoms
      for i in range(snap.natoms):
        if not snap.aselect[i]: continue
        j = ids[atoms[i][id]]
        atoms[i][icol] = self.snaps[istep].atoms[j][icol]

  # --------------------------------------------------------------------
  # values in old column are spread as ints from 1-N and assigned to new column

  def spread(self,old,n,new):
    iold = self.names[old]
    if not new in self.names: self.newcolumn(new)
    inew = self.names[new]

    min,max = self.minmax(old)
    print("min/max = ",min,max)

    gap = max - min
    invdelta = n/gap
    for snap in self.snaps:
      if not snap.tselect: continue
      atoms = snap.atoms
      for i in range(snap.natoms):
        if not snap.aselect[i]: continue
        ivalue = int((atoms[i][iold] - min) * invdelta) + 1
        if ivalue > n: ivalue = n
        if ivalue < 1: ivalue = 1
        atoms[i][inew] = ivalue

  # --------------------------------------------------------------------
  # return vector of selected snapshot time stamps

  def time(self):
    vec = self.nselect * [0]
    i = 0
    for snap in self.snaps:
      if not snap.tselect: continue
      vec[i] = snap.time
      i += 1
    return vec

  # --------------------------------------------------------------------
  # extract vector(s) of values for atom ID n at each selected timestep

  def atom(self,n,*list):
    if len(list) == 0:
      raise Exception("no columns specified")
    columns = []
    values = []
    for name in list:
      columns.append(self.names[name])
      values.append(self.nselect * [0])
    ncol = len(columns)

    id = self.names["id"]
    m = 0
    for snap in self.snaps:
      if not snap.tselect: continue
      atoms = snap.atoms
      for i in range(snap.natoms):
        if atoms[i][id] == n: break
      if atoms[i][id] != n:
        raise Exception("could not find atom ID in snapshot")
      for j in range(ncol):
        values[j][m] = atoms[i][columns[j]]
      m += 1

    if len(list) == 1: return values[0]
    else: return values

  # --------------------------------------------------------------------
  # extract vector(s) of values for selected atoms at chosen timestep

  def vecs(self,n,*list):
    snap = self.snaps[self.findtime(n)]

    if len(list) == 0:
      raise Exception("no columns specified")
    columns = []
    values = []
    for name in list:
      columns.append(self.names[name])
      values.append(snap.nselect * [0])
    ncol = len(columns)

    m = 0
    for i in range(snap.natoms):
      if not snap.aselect[i]: continue
      for j in range(ncol):
        values[j][m] = snap.atoms[i][columns[j]]
      m += 1

    if len(list) == 1: return values[0]
    else: return values

  # --------------------------------------------------------------------
  # add a new column to every snapshot and set value to 0
  # set the name of the column to str

  def newcolumn(self,str):
    ncol = len(self.snaps[0].atoms[0])
    self.map(ncol+1,str)
    for snap in self.snaps:
      atoms = snap.atoms
      newatoms = np.zeros((snap.natoms,ncol+1),np.float)
      newatoms[:,0:ncol] = snap.atoms
      snap.atoms = newatoms

  # --------------------------------------------------------------------
  # sort snapshots on time stamp

  def compare_time(self,a,b):
    if a.time < b.time:
      return -1
    elif a.time > b.time:
      return 1
    else:
      return 0

  # --------------------------------------------------------------------
  # delete successive snapshots with duplicate time stamp

  def cull(self):
    i = 1
    while i < len(self.snaps):
      if self.snaps[i].time == self.snaps[i-1].time:
        del self.snaps[i]
      else:
        i += 1

  # --------------------------------------------------------------------
  # iterate over selected snapshots

  def iterator(self,flag):
    start = 0
    if flag: start = self.iterate + 1
    for i in range(start,self.nsnaps):
      if self.snaps[i].tselect:
        self.iterate = i
        return i,self.snaps[i].time,1
    return 0,0,-1

  # --------------------------------------------------------------------
  # return list of atoms to viz for snapshot isnap
  # augment with bonds, tris, lines if extra() was invoked

  def viz(self,isnap):
    snap = self.snaps[isnap]

    time = snap.time
    box = [snap.xlo,snap.ylo,snap.zlo,snap.xhi,snap.yhi,snap.zhi]
    id = self.names["id"]
    type = self.names[self.atype]
    x = self.names["x"]
    y = self.names["y"]
    z = self.names["z"]

    # create atom list needed by viz from id,type,x,y,z
    # need Numeric/Numpy mode here

    atoms = []
    for i in range(snap.natoms):
      if not snap.aselect[i]: continue
      atom = snap.atoms[i]
      atoms.append([atom[id],atom[type],atom[x],atom[y],atom[z]])

    # create list of current bond coords from static bondlist
    # alist = dictionary of atom IDs for atoms list
    # lookup bond atom IDs in alist and grab their coords
    # try is used since some atoms may be unselected
    #   any bond with unselected atom is not returned to viz caller
    # need Numeric/Numpy mode here

    bonds = []
    if self.bondflag:
      alist = {}
      for i in range(len(atoms)): alist[int(atoms[i][0])] = i
      for bond in self.bondlist:
        try:
          i = alist[bond[2]]
          j = alist[bond[3]]
          atom1 = atoms[i]
          atom2 = atoms[j]
          bonds.append([bond[0],bond[1],atom1[2],atom1[3],atom1[4],
                        atom2[2],atom2[3],atom2[4],atom1[1],atom2[1]])
        except: continue

    tris = []
    if self.triflag:
      if self.triflag == 1: tris = self.trilist
      elif self.triflag == 2:
        timetmp,boxtmp,atomstmp,bondstmp, \
        tris,linestmp = self.triobj.viz(time,1)

    lines = []
    if self.lineflag: lines = self.linelist

    return time,box,atoms,bonds,tris,lines

  # --------------------------------------------------------------------

  def findtime(self,n):
    for i, snap in enumerate(self.snaps):
      if snap.time == n: return i
    raise Exception("no step %d exists" % n)

  # --------------------------------------------------------------------
  # return maximum box size across all selected snapshots

  def maxbox(self):
    xlo = ylo = zlo = None
    xhi = yhi = zhi = None
    for snap in self.snaps:
      if not snap.tselect: continue
      if xlo is None or snap.xlo < xlo: xlo = snap.xlo
      if xhi is None or snap.xhi > xhi: xhi = snap.xhi
      if ylo is None or snap.ylo < ylo: ylo = snap.ylo
      if yhi is None or snap.yhi > yhi: yhi = snap.yhi
      if zlo is None or snap.zlo < zlo: zlo = snap.zlo
      if zhi is None or snap.zhi > zhi: zhi = snap.zhi
    return [xlo,ylo,zlo,xhi,yhi,zhi]

  # --------------------------------------------------------------------
  # return maximum atom type across all selected snapshots and atoms

  def maxtype(self):
    icol = self.names["type"]
    max = 0
    for snap in self.snaps:
      if not snap.tselect: continue
      atoms = snap.atoms
      for i in range(snap.natoms):
        if not snap.aselect[i]: continue
        if atoms[i][icol] > max: max = atoms[i][icol]
    return int(max)

  # --------------------------------------------------------------------
  # grab bonds/tris/lines from another object

  def extra(self,arg):

    # read bonds from bond dump file

    if type(arg) is types.StringType:
      try:
        f = open(arg,'r')

        item = f.readline()
        time = int(f.readline())
        item = f.readline()
        nbonds = int(f.readline())
        item = f.readline()
        if not re.search("BONDS",item):
          raise Exception("could not read bonds from dump file")

        words = f.readline().split()
        ncol = len(words)
        for i in range(1,nbonds):
          words += f.readline().split()
        f.close()

        # convert values to int and absolute value since can be negative types

        bondlist = np.zeros((nbonds,4),np.int)
        ints = [abs(int(value)) for value in words]
        start = 0
        stop = 4
        for i in range(nbonds):
          bondlist[i] = ints[start:stop]
          start += ncol
          stop += ncol
        if bondlist:
          self.bondflag = 1
          self.bondlist = bondlist
      except:
        raise Exception("could not read from bond dump file")

    # request bonds from data object

    elif type(arg) is types.InstanceType and ".data" in str(arg.__class__):
      try:
        bondlist = []
        bondlines = arg.sections["Bonds"]
        for line in bondlines:
          words = line.split()
          bondlist.append([int(words[0]),int(words[1]),
                           int(words[2]),int(words[3])])
        if bondlist:
          self.bondflag = 1
          self.bondlist = bondlist
      except:
        raise Exception("could not extract bonds from data object")

    # request tris/lines from cdata object

    elif type(arg) is types.InstanceType and ".cdata" in str(arg.__class__):
      try:
        tmp,tmp,tmp,tmp,tris,lines = arg.viz(0)
        if tris:
          self.triflag = 1
          self.trilist = tris
        if lines:
          self.lineflag = 1
          self.linelist = lines
      except:
        raise Exception("could not extract tris/lines from cdata object")

    # request tris from mdump object

    elif type(arg) is types.InstanceType and ".mdump" in str(arg.__class__):
      try:
        self.triflag = 2
        self.triobj = arg
      except:
        raise Exception("could not extract tris from mdump object")

    else:
      raise Exception("unrecognized argument to dump.extra()")

  # --------------------------------------------------------------------

  def compare_atom(self,a,b):
    if a[0] < b[0]:
      return -1
    elif a[0] > b[0]:
      return 1
    else:
      return 0

# --------------------------------------------------------------------
# one snapshot

class Snap:
  pass

# --------------------------------------------------------------------
# time selection class

class tselect:

  def __init__(self,data):
    self.data = data

  # --------------------------------------------------------------------

  def all(self):
    data = self.data
    for snap in data.snaps:
      snap.tselect = 1
    data.nselect = len(data.snaps)
    data.aselect.all()
    print("%d snapshots selected out of %d" % (data.nselect,data.nsnaps))

  # --------------------------------------------------------------------

  def one(self,*steps):
    data = self.data
    data.nselect = 0
    for snap in data.snaps:
      snap.tselect = 0

    for n in steps:
      i = data.findtime(n)
      data.snaps[i].tselect = 1
      data.nselect += 1
      data.aselect.all()
    print("%d snapshots selected out of %d" % (data.nselect,data.nsnaps))

  # --------------------------------------------------------------------

  def none(self):
    self.one()

  # --------------------------------------------------------------------

  def skip(self,n):
    data = self.data
    count = n-1
    for snap in data.snaps:
      if not snap.tselect: continue
      count += 1
      if count == n:
        count = 0
        continue
      snap.tselect = 0
      data.nselect -= 1
    data.aselect.all()
    print("%d snapshots selected out of %d" % (data.nselect,data.nsnaps))

  # --------------------------------------------------------------------

  def test(self,teststr):
    data = self.data
    snaps = data.snaps
    cmd = teststr.replace("$t","snaps[i].time")
    ccmd = compile(cmd,'<string>','eval')
    for i in range(data.nsnaps):
      if not snaps[i].tselect: continue
      flag = eval(ccmd)
      if not flag:
        snaps[i].tselect = 0
        data.nselect -= 1
    data.aselect.all()
    print("%d snapshots selected out of %d" % (data.nselect,data.nsnaps))

# --------------------------------------------------------------------
# atom selection class

class aselect:

  def __init__(self,data):
    self.data = data

  # --------------------------------------------------------------------

  def all(self,*args):
    data = self.data
    if len(args) == 0:                           # all selected timesteps
      for snap in data.snaps:
        if not snap.tselect: continue
        for i in range(snap.natoms): snap.aselect[i] = 1
        snap.nselect = snap.natoms
    else:                                        # one timestep
      n = data.findtime(args[0])
      snap = data.snaps[n]
      for i in range(snap.natoms): snap.aselect[i] = 1
      snap.nselect = snap.natoms

  # --------------------------------------------------------------------

  def test(self,teststr,*args):
    data = self.data

    # replace all $var with snap.atoms references and compile test string

    pattern = "\$\w*"
    matches = re.findall(pattern,teststr)
    for item in matches:
      name = item[1:]
      column = data.names[name]
      insert = "snap.atoms[i][%d]" % column
      teststr = teststr.replace(item,insert)
    ccmd = compile(teststr,'<string>','eval')

    if len(args) == 0:                           # all selected timesteps
      for snap in data.snaps:
        if not snap.tselect: continue
        for i in range(snap.natoms):
          if not snap.aselect[i]: continue
          flag = eval(ccmd)
          if not flag:
            snap.aselect[i] = 0
            snap.nselect -= 1
      for i in range(data.nsnaps):
        if data.snaps[i].tselect:
          print("%d atoms of %d selected in first step %d" % \
                (data.snaps[i].nselect,data.snaps[i].natoms,data.snaps[i].time))
          break
      for i in range(data.nsnaps-1,-1,-1):
        if data.snaps[i].tselect:
          print("%d atoms of %d selected in last step %d" % \
                (data.snaps[i].nselect,data.snaps[i].natoms,data.snaps[i].time))
          break

    else:                                        # one timestep
      n = data.findtime(args[0])
      snap = data.snaps[n]
      for i in range(snap.natoms):
        if not snap.aselect[i]: continue
        exec(ccmd)
        if not flag:
          snap.aselect[i] = 0
          snap.nselect -= 1