1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
|
# Pizza.py toolkit, https://lammps.github.io/pizza
# LAMMPS Development team: developers@lammps.org, Sandia National Laboratories
#
# Copyright (2005) Sandia Corporation. Under the terms of Contract
# DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
# certain rights in this software. This software is distributed under
# the GNU General Public License.
# for python3 compatibility
from __future__ import print_function
# gl tool
oneline = "3d interactive visualization via OpenGL"
docstr = """
g = gl(d) create OpenGL display for data in d
d = atom snapshot object (dump, data)
g.bg("black") set background color (def = "black")
g.size(N) set image size to NxN
g.size(N,M) set image size to NxM
g.rotate(60,135) view from z theta and azimuthal phi (def = 60,30)
g.shift(x,y) translate by x,y pixels in view window (def = 0,0)
g.zoom(0.5) scale image by factor (def = 1)
g.box(0/1/2) 0/1/2 = none/variable/fixed box
g.box(0/1/2,"green") set box color
g.box(0/1/2,"red",4) set box edge thickness
g.file = "image" file prefix for created images (def = "image")
g.show(N) show image of snapshot at timestep N
g.all() make images of all selected snapshots
g.all(P) images of all, start file label at P
g.all(N,M,P) make M images of snapshot N, start label at P
g.pan(60,135,1.0,40,135,1.5) pan during all() operation
g.pan() no pan during all() (default)
args = z theta, azimuthal phi, zoom factor at beginning and end
values at each step are interpolated between beginning and end values
g.select = "$x > %g*3.0" string to pass to d.aselect.test() during all()
g.select = "" no extra aselect (default)
%g varies from 0.0 to 1.0 from beginning to end of all()
g.acol(2,"green") set atom colors by atom type (1-N)
g.acol([2,4],["red","blue"]) 1st arg = one type or list of types
g.acol(0,"blue") 2nd arg = one color or list of colors
g.acol(range(20),["red","blue"]) if list lengths unequal, interpolate
g.acol(range(10),"loop") assign colors in loop, randomly ordered
if 1st arg is 0, set all types to 2nd arg
if list of types has a 0 (e.g. range(10)), +1 is added to each value
interpolate means colors blend smoothly from one value to the next
g.arad([1,2],[0.5,0.3]) set atom radii, same rules as acol()
g.bcol() set bond color, same args as acol()
g.brad() set bond thickness, same args as arad()
g.tcol() set triangle color, same args as acol()
g.tfill() set triangle fill, 0 fill, 1 line, 2 both
g.lcol() set line color, same args as acol()
g.lrad() set line thickness, same args as arad()
g.adef() set atom/bond/tri/line properties to default
g.bdef() default = "loop" for colors, 0.45 for radii
g.tdef() default = 0.25 for bond/line thickness
g.ldef() default = 0 fill
by default 100 types are assigned
if atom/bond/tri/line has type > # defined properties, is an error
from vizinfo import colors access color list
print(colors) list defined color names and RGB values
colors["nickname"] = [R,G,B] set new RGB values from 0 to 255
140 pre-defined colors: red, green, blue, purple, yellow, black, white, etc
Settings specific to gl tool:
g.q(10) set quality of image (def = 5)
g.axis(0/1) turn xyz axes off/on
g.ortho(0/1) perspective (0) vs orthographic (1) view
g.clip('xlo',0.25) clip in xyz from lo/hi at box fraction (0-1)
g.reload() force all data to be reloaded
g.cache = 0/1 turn off/on GL cache lists (def = on)
theta,phi,x,y,scale,up = g.gview() grab all current view parameters
g.sview(theta,phi,x,y,scale,up) set all view parameters
data reload is necessary if dump selection is used to change the data
cache lists usually improve graphics performance
gview returns values to use in other commands:
theta,phi are args to rotate()
x,y are args to shift()
scale is arg to zoom()
up is a 3-vector arg to sview()
"""
# History
# 9/05, Steve Plimpton (SNL): original version
# ToDo list
# when do aselect with select str while looping N times on same timestep
# would not let you grow # of atoms selected
# Variables
# ztheta = vertical angle from z-azis of viewpoint
# azphi = azimuthal angle of viewpoint
# xshift,yshift = xy translation of scene (in pixels)
# distance = size of simulation box (largest dim)
# eye = viewpoint distance from center of scene
# file = filename prefix to use for images produced
# boxflag = 0/1/2 for drawing simulation box: none/variable/fixed
# bxcol = color of box
# bxthick = thickness of box lines
# bgcol = color of background
# vizinfo = scene attributes
# center[3] = center point of simulation box
# view[3] = direction towards eye in simulation box (unit vector)
# up[3] = screen up direction in simulation box (unit vector)
# right[3] = screen right direction in simulation box (unit vector)
# Imports and external programs
from math import sin,cos,sqrt,pi,acos
from OpenGL.Tk import *
from OpenGL.GLUT import *
import Image
from vizinfo import vizinfo
# Class definition
class gl:
# --------------------------------------------------------------------
def __init__(self,data):
self.data = data
self.root = None
self.xpixels = 512
self.ypixels = 512
self.ztheta = 60
self.azphi = 30
self.scale = 1.0
self.xshift = self.yshift = 0
self.file = "image"
self.boxflag = 0
self.bxcol = [1,1,0]
self.bxthick = 0.3
self.bgcol = [0,0,0]
self.labels = []
self.panflag = 0
self.select = ""
self.axisflag = 0
self.orthoflag = 1
self.nslices = 5
self.nstacks = 5
self.nsides = 10
self.theta_amplify = 2
self.shiny = 2
self.clipflag = 0
self.clipxlo = self.clipylo = self.clipzlo = 0.0
self.clipxhi = self.clipyhi = self.clipzhi = 1.0
self.nclist = 0
self.calllist = [0] # indexed by 1-Ntype, so start with 0 index
self.cache = 1
self.cachelist = 0
self.boxdraw = []
self.atomdraw = []
self.bonddraw = []
self.tridraw = []
self.linedraw = []
self.ready = 0
self.create_window()
self.vizinfo = vizinfo()
self.adef()
self.bdef()
self.tdef()
self.ldef()
self.center = 3*[0]
self.view = 3*[0]
self.up = 3*[0]
self.right = 3*[0]
self.viewupright()
# --------------------------------------------------------------------
def bg(self,color):
from vizinfo import colors
self.bgcol = [colors[color][0]/255.0,colors[color][1]/255.0,
colors[color][2]/255.0]
self.w.tkRedraw()
# --------------------------------------------------------------------
def size(self,xnew,ynew=None):
self.xpixels = xnew
if not ynew: self.ypixels = self.xpixels
else: self.ypixels = ynew
self.create_window()
# --------------------------------------------------------------------
def axis(self,value):
self.axisflag = value
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def create_window(self):
if self.root: self.root.destroy()
from __main__ import tkroot
self.root = Toplevel(tkroot)
self.root.title('Pizza.py gl tool')
self.w = MyOpengl(self.root,width=self.xpixels,height=self.ypixels,
double=1,depth=1)
self.w.pack(expand=YES)
# self.w.pack(expand=YES,fill=BOTH)
glViewport(0,0,self.xpixels,self.ypixels)
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_DEPTH_TEST);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE,GL_TRUE);
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL)
self.rtrack = self.xpixels
if self.ypixels > self.xpixels: self.rtrack = self.ypixels
self.w.redraw = self.redraw
self.w.parent = self
self.w.tkRedraw()
tkroot.update_idletasks() # force window to appear
# --------------------------------------------------------------------
def clip(self,which,value):
if which == "xlo":
self.clipxlo = value
if value > self.clipxhi: self.clipxlo = self.clipxhi
elif which == "xhi":
self.clipxhi = value
if value < self.clipxlo: self.clipxhi = self.clipxlo
elif which == "ylo":
self.clipylo = value
if value > self.clipyhi: self.clipylo = self.clipyhi
elif which == "yhi":
self.clipyhi = value
if value < self.clipylo: self.clipyhi = self.clipylo
elif which == "zlo":
self.clipzlo = value
if value > self.clipzhi: self.clipzlo = self.clipzhi
elif which == "zhi":
self.clipzhi = value
if value < self.clipzlo: self.clipzhi = self.clipzlo
oldflag = self.clipflag
if self.clipxlo > 0 or self.clipylo > 0 or self.clipzlo > 0 or \
self.clipxhi < 1 or self.clipyhi < 1 or self.clipzhi < 1:
self.clipflag = 1
else: self.clipflag = 0
if oldflag == 0 and self.clipflag == 0: return
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def q(self,value):
self.nslices = value
self.nstacks = value
self.make_atom_calllist()
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def ortho(self,value):
self.orthoflag = value
self.w.tkRedraw()
# --------------------------------------------------------------------
# set unit vectors for view,up,right from ztheta,azphi
# assume +z in scene should be up on screen (unless looking down z-axis)
# right = up x view
def viewupright(self):
self.view[0] = cos(pi*self.azphi/180) * sin(pi*self.ztheta/180)
self.view[1] = sin(pi*self.azphi/180) * sin(pi*self.ztheta/180)
self.view[2] = cos(pi*self.ztheta/180)
if self.ztheta == 0.0:
self.up[0] = cos(pi*self.azphi/180)
self.up[1] = -sin(pi*self.azphi/180)
self.up[2] = 0.0
elif self.ztheta == 180.0:
self.up[0] = cos(pi*self.azphi/180)
self.up[1] = sin(pi*self.azphi/180)
self.up[2] = 0.0
else:
dot = self.view[2] # dot = (0,0,1) . view
self.up[0] = -dot*self.view[0] # up projected onto v = dot * v
self.up[1] = -dot*self.view[1] # up perp to v = up - dot * v
self.up[2] = 1.0 - dot*self.view[2]
self.up = vecnorm(self.up)
self.right = veccross(self.up,self.view)
# --------------------------------------------------------------------
# reset ztheta,azphi and thus view,up.right
# called as function from Pizza.py
def rotate(self,ztheta,azphi):
self.ztheta = ztheta
self.azphi = azphi
self.viewupright()
self.setview()
self.w.tkRedraw()
# --------------------------------------------------------------------
# return all view params to reproduce current display via sview()
def gview(self):
return self.ztheta,self.azphi,self.xshift,self.yshift,self.scale,self.up
# --------------------------------------------------------------------
# set current view, called by user with full set of view params
# up is not settable via any other call, all other params are
def sview(self,ztheta,azphi,xshift,yshift,scale,up):
self.ztheta = ztheta
self.azphi = azphi
self.xshift = xshift
self.yshift = yshift
self.scale = scale
self.up[0] = up[0]
self.up[1] = up[1]
self.up[2] = up[2]
self.up = vecnorm(self.up)
self.view[0] = cos(pi*self.azphi/180) * sin(pi*self.ztheta/180)
self.view[1] = sin(pi*self.azphi/180) * sin(pi*self.ztheta/180)
self.view[2] = cos(pi*self.ztheta/180)
self.right = veccross(self.up,self.view)
self.setview()
self.w.tkRedraw()
# --------------------------------------------------------------------
# rotation triggered by mouse trackball
# project old,new onto unit trackball surf
# rotate view,up around axis of rotation = old x new
# right = up x view
# reset ztheta,azphi from view
def mouse_rotate(self,xnew,ynew,xold,yold):
# change y pixels to measure from bottom of window instead of top
yold = self.ypixels - yold
ynew = self.ypixels - ynew
# vold = unit vector to (xold,yold) projected onto trackball
# vnew = unit vector to (xnew,ynew) projected onto trackball
# return (no rotation) if either projection point is outside rtrack
vold = [0,0,0]
vold[0] = xold - (0.5*self.xpixels + self.xshift)
vold[1] = yold - (0.5*self.ypixels + self.yshift)
vold[2] = self.rtrack*self.rtrack - vold[0]*vold[0] - vold[1]*vold[1]
if vold[2] < 0: return
vold[2] = sqrt(vold[2])
vold = vecnorm(vold)
vnew = [0,0,0]
vnew[0] = xnew - (0.5*self.xpixels + self.xshift)
vnew[1] = ynew - (0.5*self.ypixels + self.yshift)
vnew[2] = self.rtrack*self.rtrack - vnew[0]*vnew[0] - vnew[1]*vnew[1]
if vnew[2] < 0: return
vnew[2] = sqrt(vnew[2])
vnew = vecnorm(vnew)
# rot = trackball rotation axis in screen ref frame = vold x vnew
# theta = angle of rotation = sin(theta) for small theta
# axis = rotation axis in body ref frame described by right,up,view
rot = veccross(vold,vnew)
theta = sqrt(rot[0]*rot[0] + rot[1]*rot[1] + rot[2]*rot[2])
theta *= self.theta_amplify
axis = [0,0,0]
axis[0] = rot[0]*self.right[0] + rot[1]*self.up[0] + rot[2]*self.view[0]
axis[1] = rot[0]*self.right[1] + rot[1]*self.up[1] + rot[2]*self.view[1]
axis[2] = rot[0]*self.right[2] + rot[1]*self.up[2] + rot[2]*self.view[2]
axis = vecnorm(axis)
# view is changed by (axis x view) scaled by theta
# up is changed by (axis x up) scaled by theta
# force up to be perp to view via up_perp = up - (up . view) view
# right = up x view
delta = veccross(axis,self.view)
self.view[0] -= theta*delta[0]
self.view[1] -= theta*delta[1]
self.view[2] -= theta*delta[2]
self.view = vecnorm(self.view)
delta = veccross(axis,self.up)
self.up[0] -= theta*delta[0]
self.up[1] -= theta*delta[1]
self.up[2] -= theta*delta[2]
dot = vecdot(self.up,self.view)
self.up[0] -= dot*self.view[0]
self.up[1] -= dot*self.view[1]
self.up[2] -= dot*self.view[2]
self.up = vecnorm(self.up)
self.right = veccross(self.up,self.view)
# convert new view to ztheta,azphi
self.ztheta = acos(self.view[2])/pi * 180.0
if (self.ztheta == 0.0): self.azphi = 0.0
else: self.azphi = acos(self.view[0]/sin(pi*self.ztheta/180.0))/pi * 180.0
if self.view[1] < 0: self.azphi = 360.0 - self.azphi
self.setview()
self.w.tkRedraw()
# --------------------------------------------------------------------
def shift(self,x,y):
self.xshift = x;
self.yshift = y;
self.setview()
self.w.tkRedraw()
# --------------------------------------------------------------------
def zoom(self,scale):
self.scale = scale
self.setview()
self.w.tkRedraw()
# --------------------------------------------------------------------
# set view params needed by redraw
# input: center = center of box
# distance = size of scene (longest box length)
# scale = zoom factor (1.0 = no zoom)
# xshift,yshift = translation factor in pixels
# view = unit vector from center to viewpoint
# up = unit vector in up direction in scene
# right = unit vector in right direction in scene
# output: eye = distance to view scene from
# xto,yto,zto = point to look to
# xfrom,yfrom,zfrom = point to look from
def setview(self):
if not self.ready: return # no distance since no scene yet
self.eye = 3 * self.distance / self.scale
xfactor = 0.5*self.eye*self.xshift/self.xpixels
yfactor = 0.5*self.eye*self.yshift/self.ypixels
self.xto = self.center[0] - xfactor*self.right[0] - yfactor*self.up[0]
self.yto = self.center[1] - xfactor*self.right[1] - yfactor*self.up[1]
self.zto = self.center[2] - xfactor*self.right[2] - yfactor*self.up[2]
self.xfrom = self.xto + self.eye*self.view[0]
self.yfrom = self.yto + self.eye*self.view[1]
self.zfrom = self.zto + self.eye*self.view[2]
# --------------------------------------------------------------------
# box attributes, also used for triangle lines
def box(self,*args):
self.boxflag = args[0]
if len(args) > 1:
from vizinfo import colors
self.bxcol = [colors[args[1]][0]/255.0,colors[args[1]][1]/255.0,
colors[args[1]][2]/255.0]
if len(args) > 2: self.bxthick = args[2]
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
# grab all selected snapshots from data object
# add GL-specific info to each bond
def reload(self):
print("Loading data into gl tool ...")
data = self.data
self.timeframes = []
self.boxframes = []
self.atomframes = []
self.bondframes = []
self.triframes = []
self.lineframes = []
box = []
if self.boxflag == 2: box = data.maxbox()
flag = 0
while 1:
which,time,flag = data.iterator(flag)
if flag == -1: break
time,boxone,atoms,bonds,tris,lines = data.viz(which)
if self.boxflag < 2: box = boxone
if bonds: self.bonds_augment(bonds)
self.timeframes.append(time)
self.boxframes.append(box)
self.atomframes.append(atoms)
self.bondframes.append(bonds)
self.triframes.append(tris)
self.lineframes.append(lines)
print(time,end='')
sys.stdout.flush()
print()
self.nframes = len(self.timeframes)
self.distance = compute_distance(self.boxframes[0])
self.center = compute_center(self.boxframes[0])
self.ready = 1
self.setview()
# --------------------------------------------------------------------
def nolabel(self):
self.cachelist = -self.cachelist
self.labels = []
# --------------------------------------------------------------------
# show a single snapshot
# distance from snapshot box or max box for all selected steps
def show(self,ntime):
data = self.data
which = data.findtime(ntime)
time,box,atoms,bonds,tris,lines = data.viz(which)
if self.boxflag == 2: box = data.maxbox()
self.distance = compute_distance(box)
self.center = compute_center(box)
if bonds: self.bonds_augment(bonds)
self.boxdraw = box
self.atomdraw = atoms
self.bonddraw = bonds
self.tridraw = tris
self.linedraw = lines
self.ready = 1
self.setview()
self.cachelist = -self.cachelist
self.w.tkRedraw()
self.save()
# --------------------------------------------------------------------
def pan(self,*list):
if len(list) == 0: self.panflag = 0
else:
self.panflag = 1
self.ztheta_start = list[0]
self.azphi_start = list[1]
self.scale_start = list[2]
self.ztheta_stop = list[3]
self.azphi_stop = list[4]
self.scale_stop = list[5]
# --------------------------------------------------------------------
def all(self,*list):
data = self.data
if len(list) == 0:
nstart = 0
ncount = data.nselect
elif len(list) == 1:
nstart = list[0]
ncount = data.nselect
else:
ntime = list[0]
nstart = list[2]
ncount = list[1]
if self.boxflag == 2: box = data.maxbox()
# loop over all selected steps
# distance from 1st snapshot box or max box for all selected steps
# recompute box center on 1st step or if panning
if len(list) <= 1:
n = nstart
i = flag = 0
while 1:
which,time,flag = data.iterator(flag)
if flag == -1: break
fraction = float(i) / (ncount-1)
if self.select != "":
newstr = self.select % fraction
data.aselect.test(newstr,time)
time,boxone,atoms,bonds,tris,lines = data.viz(which)
if self.boxflag < 2: box = boxone
if n == nstart: self.distance = compute_distance(box)
if n < 10: file = self.file + "000" + str(n)
elif n < 100: file = self.file + "00" + str(n)
elif n < 1000: file = self.file + "0" + str(n)
else: file = self.file + str(n)
if self.panflag:
self.ztheta = self.ztheta_start + \
fraction*(self.ztheta_stop - self.ztheta_start)
self.azphi = self.azphi_start + \
fraction*(self.azphi_stop - self.azphi_start)
self.scale = self.scale_start + \
fraction*(self.scale_stop - self.scale_start)
self.viewupright()
if n == nstart or self.panflag: self.center = compute_center(box)
if bonds: self.bonds_augment(bonds)
self.boxdraw = box
self.atomdraw = atoms
self.bonddraw = bonds
self.tridraw = tris
self.linedraw = lines
self.ready = 1
self.setview()
self.cachelist = -self.cachelist
self.w.tkRedraw()
self.save(file)
print(time,end='')
sys.stdout.flush()
i += 1
n += 1
# loop ncount times on same step
# distance from 1st snapshot box or max box for all selected steps
# recompute box center on 1st step or if panning
else:
which = data.findtime(ntime)
n = nstart
for i in range(ncount):
fraction = float(i) / (ncount-1)
if self.select != "":
newstr = self.select % fraction
data.aselect.test(newstr,ntime)
time,boxone,atoms,bonds,tris,lines = data.viz(which)
if self.boxflag < 2: box = boxone
if n == nstart: self.distance = compute_distance(box)
if n < 10: file = self.file + "000" + str(n)
elif n < 100: file = self.file + "00" + str(n)
elif n < 1000: file = self.file + "0" + str(n)
else: file = self.file + str(n)
if self.panflag:
self.ztheta = self.ztheta_start + \
fraction*(self.ztheta_stop - self.ztheta_start)
self.azphi = self.azphi_start + \
fraction*(self.azphi_stop - self.azphi_start)
self.scale = self.scale_start + \
fraction*(self.scale_stop - self.scale_start)
self.viewupright()
if n == nstart or self.panflag: self.center = compute_center(box)
if bonds: self.bonds_augment(bonds)
self.boxdraw = box
self.atomdraw = atoms
self.bonddraw = bonds
self.tridraw = tris
self.linedraw = lines
self.ready = 1
self.setview()
self.cachelist = -self.cachelist
self.w.tkRedraw()
self.save(file)
print(n,end='')
sys.stdout.flush()
n += 1
print("\n%d images" % ncount)
# --------------------------------------------------------------------
def display(self,index):
self.boxdraw = self.boxframes[index]
self.atomdraw = self.atomframes[index]
self.bonddraw = self.bondframes[index]
self.tridraw = self.triframes[index]
self.linedraw = self.lineframes[index]
self.ready = 1
self.cachelist = -self.cachelist
self.w.tkRedraw()
return (self.timeframes[index],len(self.atomdraw))
# --------------------------------------------------------------------
# draw the GL scene
def redraw(self,o):
# clear window to background color
glClearColor(self.bgcol[0],self.bgcol[1],self.bgcol[2],0)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
# not ready if no scene yet
if not self.ready: return
# set view from eye, distance, 3 lookat vectors (from,to,up)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
if self.orthoflag:
glOrtho(-0.25*self.eye,0.25*self.eye,-0.25*self.eye,0.25*self.eye,
self.eye-2*self.distance,self.eye+2*self.distance)
else:
gluPerspective(30.0,1.0,0.01,10000.0)
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
gluLookAt(self.xfrom,self.yfrom,self.zfrom,self.xto,self.yto,self.zto,
self.up[0],self.up[1],self.up[2])
# draw scene from display list if caching allowed and list hasn't changed
# else redraw and store as new display list if caching allowed
if self.cache and self.cachelist > 0: glCallList(self.cachelist);
else:
if self.cache:
if self.cachelist < 0: glDeleteLists(-self.cachelist,1)
self.cachelist = glGenLists(1)
glNewList(self.cachelist,GL_COMPILE_AND_EXECUTE)
# draw box, clip-box, xyz axes, lines
glDisable(GL_LIGHTING)
if self.boxflag:
self.draw_box(0)
if self.clipflag: self.draw_box(1)
if self.axisflag: self.draw_axes()
ncolor = self.vizinfo.nlcolor
for line in self.linedraw:
itype = int(line[1])
if itype > ncolor: raise StandardError("line type too big")
red,green,blue = self.vizinfo.lcolor[itype]
glColor3f(red,green,blue)
thick = self.vizinfo.lrad[itype]
glLineWidth(thick)
glBegin(GL_LINES)
glVertex3f(line[2],line[3],line[4])
glVertex3f(line[5],line[6],line[7])
glEnd()
glEnable(GL_LIGHTING)
# draw non-clipped scene = atoms, bonds, triangles
# draw atoms as collection of points
# cannot put PointSize inside glBegin
# so probably need to group atoms by type for best performance
# or just allow one radius
# need to scale radius appropriately with box size
# or could leave it at absolute value
# use POINT_SMOOTH to enable anti-aliasing and round points
# multiple timesteps via vcr::play() is still not fast
# caching makes it fast for single frame, but multiple frames is slow
# need to enable clipping
# if not self.clipflag:
# glDisable(GL_LIGHTING)
# glEnable(GL_POINT_SMOOTH)
# glPointSize(self.vizinfo.arad[int(self.atomdraw[0][1])])
# glBegin(GL_POINTS)
# for atom in self.atomdraw:
# red,green,blue = self.vizinfo.acolor[int(atom[1])]
# glColor(red,green,blue)
# glVertex3d(atom[2],atom[3],atom[4])
# glEnd()
# glEnable(GL_LIGHTING)
if not self.clipflag:
for atom in self.atomdraw:
glTranslatef(atom[2],atom[3],atom[4]);
glCallList(self.calllist[int(atom[1])]);
glTranslatef(-atom[2],-atom[3],-atom[4]);
if self.bonddraw:
bound = 0.25 * self.distance
ncolor = self.vizinfo.nbcolor
for bond in self.bonddraw:
if bond[10] > bound: continue
itype = int(bond[1])
if itype > ncolor: raise StandardError("bond type too big")
red,green,blue = self.vizinfo.bcolor[itype]
rad = self.vizinfo.brad[itype]
glPushMatrix()
glTranslatef(bond[2],bond[3],bond[4])
glRotatef(bond[11],bond[12],bond[13],0.0)
glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION,[red,green,blue,1.0]);
glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,self.shiny);
obj = gluNewQuadric()
gluCylinder(obj,rad,rad,bond[10],self.nsides,self.nsides)
glPopMatrix()
if self.tridraw:
fillflag = self.vizinfo.tfill[int(self.tridraw[0][1])]
if fillflag != 1:
if fillflag:
glEnable(GL_POLYGON_OFFSET_FILL)
glPolygonOffset(1.0,1.0)
glBegin(GL_TRIANGLES)
ncolor = self.vizinfo.ntcolor
for tri in self.tridraw:
itype = int(tri[1])
if itype > ncolor: raise Exception("tri type too big")
red,green,blue = self.vizinfo.tcolor[itype]
glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION,[red,green,blue,1.0]);
glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,self.shiny);
glNormal3f(tri[11],tri[12],tri[13])
glVertex3f(tri[2],tri[3],tri[4])
glVertex3f(tri[5],tri[6],tri[7])
glVertex3f(tri[8],tri[9],tri[10])
glEnd()
if fillflag: glDisable(GL_POLYGON_OFFSET_FILL)
if fillflag:
glDisable(GL_LIGHTING)
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE)
glLineWidth(self.bxthick)
glColor3f(self.bxcol[0],self.bxcol[1],self.bxcol[2])
glBegin(GL_TRIANGLES)
for tri in self.tridraw:
glVertex3f(tri[2],tri[3],tri[4])
glVertex3f(tri[5],tri[6],tri[7])
glVertex3f(tri[8],tri[9],tri[10])
glEnd()
glEnable(GL_LIGHTING)
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL)
# draw clipped scene = atoms, bonds, triangles
else:
box = self.boxdraw
xlo = box[0] + self.clipxlo*(box[3] - box[0])
xhi = box[0] + self.clipxhi*(box[3] - box[0])
ylo = box[1] + self.clipylo*(box[4] - box[1])
yhi = box[1] + self.clipyhi*(box[4] - box[1])
zlo = box[2] + self.clipzlo*(box[5] - box[2])
zhi = box[2] + self.clipzhi*(box[5] - box[2])
for atom in self.atomdraw:
x,y,z = atom[2],atom[3],atom[4]
if x >= xlo and x <= xhi and y >= ylo and y <= yhi and \
z >= zlo and z <= zhi:
glTranslatef(x,y,z);
glCallList(self.calllist[int(atom[1])]);
glTranslatef(-x,-y,-z);
if self.bonddraw:
bound = 0.25 * self.distance
ncolor = self.vizinfo.nbcolor
for bond in self.bonddraw:
xmin = min2(bond[2],bond[5])
xmax = max2(bond[2],bond[5])
ymin = min2(bond[3],bond[6])
ymax = max2(bond[3],bond[6])
zmin = min2(bond[4],bond[7])
zmax = max2(bond[4],bond[7])
if xmin >= xlo and xmax <= xhi and \
ymin >= ylo and ymax <= yhi and zmin >= zlo and zmax <= zhi:
if bond[10] > bound: continue
itype = int(bond[1])
if itype > ncolor: raise Exception("bond type too big")
red,green,blue = self.vizinfo.bcolor[itype]
rad = self.vizinfo.brad[itype]
glPushMatrix()
glTranslatef(bond[2],bond[3],bond[4])
glRotatef(bond[11],bond[12],bond[13],0.0)
glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION,[red,green,blue,1.0]);
glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,self.shiny);
obj = gluNewQuadric()
gluCylinder(obj,rad,rad,bond[10],self.nsides,self.nsides)
glPopMatrix()
if self.tridraw:
fillflag = self.vizinfo.tfill[int(self.tridraw[0][1])]
if fillflag != 1:
if fillflag:
glEnable(GL_POLYGON_OFFSET_FILL)
glPolygonOffset(1.0,1.0)
glBegin(GL_TRIANGLES)
ncolor = self.vizinfo.ntcolor
for tri in self.tridraw:
xmin = min3(tri[2],tri[5],tri[8])
xmax = max3(tri[2],tri[5],tri[8])
ymin = min3(tri[3],tri[6],tri[9])
ymax = max3(tri[3],tri[6],tri[9])
zmin = min3(tri[4],tri[7],tri[10])
zmax = max3(tri[4],tri[7],tri[10])
if xmin >= xlo and xmax <= xhi and \
ymin >= ylo and ymax <= yhi and \
zmin >= zlo and zmax <= zhi:
itype = int(tri[1])
if itype > ncolor: raise Exception("tri type too big")
red,green,blue = self.vizinfo.tcolor[itype]
glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION,
[red,green,blue,1.0]);
glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,self.shiny);
glNormal3f(tri[11],tri[12],tri[13])
glVertex3f(tri[2],tri[3],tri[4])
glVertex3f(tri[5],tri[6],tri[7])
glVertex3f(tri[8],tri[9],tri[10])
glEnd()
if fillflag: glDisable(GL_POLYGON_OFFSET_FILL)
if fillflag:
glDisable(GL_LIGHTING)
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE)
glLineWidth(self.bxthick)
glColor3f(self.bxcol[0],self.bxcol[1],self.bxcol[2])
glBegin(GL_TRIANGLES)
for tri in self.tridraw:
xmin = min3(tri[2],tri[5],tri[8])
xmax = max3(tri[2],tri[5],tri[8])
ymin = min3(tri[3],tri[6],tri[9])
ymax = max3(tri[3],tri[6],tri[9])
zmin = min3(tri[4],tri[7],tri[10])
zmax = max3(tri[4],tri[7],tri[10])
if xmin >= xlo and xmax <= xhi and \
ymin >= ylo and ymax <= yhi and \
zmin >= zlo and zmax <= zhi:
glVertex3f(tri[2],tri[3],tri[4])
glVertex3f(tri[5],tri[6],tri[7])
glVertex3f(tri[8],tri[9],tri[10])
glEnd()
glEnable(GL_LIGHTING)
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL)
if self.cache: glEndList()
glFlush()
# --------------------------------------------------------------------
# make new call list for each atom type
# called when atom color/rad/quality is changed
def make_atom_calllist(self):
# extend calllist array if necessary
if self.vizinfo.nacolor > self.nclist:
for i in range(self.vizinfo.nacolor-self.nclist): self.calllist.append(0)
self.nclist = self.vizinfo.nacolor
# create new calllist for each atom type
for itype in xrange(1,self.vizinfo.nacolor+1):
if self.calllist[itype]: glDeleteLists(self.calllist[itype],1)
ilist = glGenLists(1)
self.calllist[itype] = ilist
glNewList(ilist,GL_COMPILE)
red,green,blue = self.vizinfo.acolor[itype]
rad = self.vizinfo.arad[itype]
glColor3f(red,green,blue);
# glPointSize(10.0*rad)
# glBegin(GL_POINTS)
# glVertex3f(0.0,0.0,0.0)
# glEnd()
glMaterialfv(GL_FRONT,GL_EMISSION,[red,green,blue,1.0]);
glMaterialf(GL_FRONT,GL_SHININESS,self.shiny);
glutSolidSphere(rad,self.nslices,self.nstacks)
glEndList()
# --------------------------------------------------------------------
# augment bond info returned by viz() with info needed for GL draw
# info = length, theta, -dy, dx for bond orientation
def bonds_augment(self,bonds):
for bond in bonds:
dx = bond[5] - bond[2]
dy = bond[6] - bond[3]
dz = bond[7] - bond[4]
length = sqrt(dx*dx + dy*dy + dz*dz)
dx /= length
dy /= length
dz /= length
theta = acos(dz)*180.0/pi
bond += [length,theta,-dy,dx]
# --------------------------------------------------------------------
def draw_box(self,flag):
xlo,ylo,zlo,xhi,yhi,zhi = self.boxdraw
if flag:
tmp = xlo + self.clipxlo*(xhi - xlo)
xhi = xlo + self.clipxhi*(xhi - xlo)
xlo = tmp
tmp = ylo + self.clipylo*(yhi - ylo)
yhi = ylo + self.clipyhi*(yhi - ylo)
ylo = tmp
tmp = zlo + self.clipzlo*(zhi - zlo)
zhi = zlo + self.clipzhi*(zhi - zlo)
zlo = tmp
glLineWidth(self.bxthick)
glColor3f(self.bxcol[0],self.bxcol[1],self.bxcol[2])
glBegin(GL_LINE_LOOP)
glVertex3f(xlo,ylo,zlo)
glVertex3f(xhi,ylo,zlo)
glVertex3f(xhi,yhi,zlo)
glVertex3f(xlo,yhi,zlo)
glEnd()
glBegin(GL_LINE_LOOP)
glVertex3f(xlo,ylo,zhi)
glVertex3f(xhi,ylo,zhi)
glVertex3f(xhi,yhi,zhi)
glVertex3f(xlo,yhi,zhi)
glEnd()
glBegin(GL_LINES)
glVertex3f(xlo,ylo,zlo)
glVertex3f(xlo,ylo,zhi)
glVertex3f(xhi,ylo,zlo)
glVertex3f(xhi,ylo,zhi)
glVertex3f(xhi,yhi,zlo)
glVertex3f(xhi,yhi,zhi)
glVertex3f(xlo,yhi,zlo)
glVertex3f(xlo,yhi,zhi)
glEnd()
# --------------------------------------------------------------------
def draw_axes(self):
xlo,ylo,zlo,xhi,yhi,zhi = self.boxdraw
delta = xhi-xlo
if yhi-ylo > delta: delta = yhi-ylo
if zhi-zlo > delta: delta = zhi-zlo
delta *= 0.1
glLineWidth(self.bxthick)
glBegin(GL_LINES)
glColor3f(1,0,0)
glVertex3f(xlo-delta,ylo-delta,zlo-delta)
glVertex3f(xhi-delta,ylo-delta,zlo-delta)
glColor3f(0,1,0)
glVertex3f(xlo-delta,ylo-delta,zlo-delta)
glVertex3f(xlo-delta,yhi-delta,zlo-delta)
glColor3f(0,0,1)
glVertex3f(xlo-delta,ylo-delta,zlo-delta)
glVertex3f(xlo-delta,ylo-delta,zhi-delta)
glEnd()
# --------------------------------------------------------------------
def save(self,file=None):
self.w.update() # force image on screen to be current before saving it
pstring = glReadPixels(0,0,self.xpixels,self.ypixels,
GL_RGBA,GL_UNSIGNED_BYTE)
snapshot = Image.fromstring("RGBA",(self.xpixels,self.ypixels),pstring)
snapshot = snapshot.transpose(Image.FLIP_TOP_BOTTOM)
if not file: file = self.file
snapshot.save(file + ".png")
# --------------------------------------------------------------------
def adef(self):
self.vizinfo.setcolors("atom",range(100),"loop")
self.vizinfo.setradii("atom",range(100),0.45)
self.make_atom_calllist()
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def bdef(self):
self.vizinfo.setcolors("bond",range(100),"loop")
self.vizinfo.setradii("bond",range(100),0.25)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def tdef(self):
self.vizinfo.setcolors("tri",range(100),"loop")
self.vizinfo.setfills("tri",range(100),0)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def ldef(self):
self.vizinfo.setcolors("line",range(100),"loop")
self.vizinfo.setradii("line",range(100),0.25)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def acol(self,atypes,colors):
self.vizinfo.setcolors("atom",atypes,colors)
self.make_atom_calllist()
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def arad(self,atypes,radii):
self.vizinfo.setradii("atom",atypes,radii)
self.make_atom_calllist()
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def bcol(self,btypes,colors):
self.vizinfo.setcolors("bond",btypes,colors)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def brad(self,btypes,radii):
self.vizinfo.setradii("bond",btypes,radii)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def tcol(self,ttypes,colors):
self.vizinfo.setcolors("tri",ttypes,colors)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def tfill(self,ttypes,flags):
self.vizinfo.setfills("tri",ttypes,flags)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def lcol(self,ltypes,colors):
self.vizinfo.setcolors("line",ltypes,colors)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
def lrad(self,ltypes,radii):
self.vizinfo.setradii("line",ltypes,radii)
self.cachelist = -self.cachelist
self.w.tkRedraw()
# --------------------------------------------------------------------
# derived class from Togl's Opengl
# overwrite redraw, translate, rotate, scale methods
# latter 3 are mouse-motion methods
class MyOpengl(Opengl):
def __init__(self, master, cnf={}, **kw):
args = (self,master,cnf)
Opengl.__init__(*args,**kw)
Opengl.autospin_allowed = 0
# redraw Opengl scene
# call parent redraw() method
def tkRedraw(self,*dummy):
if not self.initialised: return
self.tk.call(self._w,'makecurrent')
self.redraw(self)
self.tk.call(self._w,'swapbuffers')
# left button translate
# access parent xshift/yshift and call parent trans() method
def tkTranslate(self,event):
dx = event.x - self.xmouse
dy = event.y - self.ymouse
x = self.parent.xshift + dx
y = self.parent.yshift - dy
self.parent.shift(x,y)
self.tkRedraw()
self.tkRecordMouse(event)
# middle button trackball
# call parent mouse_rotate() method
def tkRotate(self,event):
self.parent.mouse_rotate(event.x,event.y,self.xmouse,self.ymouse)
self.tkRedraw()
self.tkRecordMouse(event)
# right button zoom
# access parent scale and call parent zoom() method
def tkScale(self,event):
scale = 1 - 0.01 * (event.y - self.ymouse)
if scale < 0.001: scale = 0.001
elif scale > 1000: scale = 1000
scale *= self.parent.scale
self.parent.zoom(scale)
self.tkRedraw()
self.tkRecordMouse(event)
# --------------------------------------------------------------------
# draw a line segment
def segment(p1,p2):
glVertex3f(p1[0],p1[1],p1[2])
glVertex3f(p2[0],p2[1],p2[2])
# --------------------------------------------------------------------
# normalize a 3-vector to unit length
def vecnorm(v):
length = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2])
return [v[0]/length,v[1]/length,v[2]/length]
# --------------------------------------------------------------------
# dot product of two 3-vectors
def vecdot(v1,v2):
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]
# --------------------------------------------------------------------
# cross product of two 3-vectors
def veccross(v1,v2):
v = [0,0,0]
v[0] = v1[1]*v2[2] - v1[2]*v2[1]
v[1] = v1[2]*v2[0] - v1[0]*v2[2]
v[2] = v1[0]*v2[1] - v1[1]*v2[0]
return v
# --------------------------------------------------------------------
# return characteristic distance of simulation domain = max dimension
def compute_distance(box):
distance = box[3]-box[0]
if box[4]-box[1] > distance: distance = box[4]-box[1]
if box[5]-box[2] > distance: distance = box[5]-box[2]
return distance
# --------------------------------------------------------------------
# return center of box as 3 vector
def compute_center(box):
c = [0,0,0]
c[0] = 0.5 * (box[0] + box[3])
c[1] = 0.5 * (box[1] + box[4])
c[2] = 0.5 * (box[2] + box[5])
return c
# --------------------------------------------------------------------
# return min of 2 values
def min2(a,b):
if b < a: a = b
return a
# --------------------------------------------------------------------
# return max of 2 values
def max2(a,b):
if b > a: a = b
return a
# --------------------------------------------------------------------
# return min of 3 values
def min3(a,b,c):
if b < a: a = b
if c < a: a = c
return a
# --------------------------------------------------------------------
# return max of 3 values
def max3(a,b,c):
if b > a: a = b
if c > a: a = c
return a
|