1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS Development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "../testing/core.h"
#include "info.h"
#include "lammps.h"
#include "library.h"
#include "utils.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <cstdio>
#include <mpi.h>
// whether to print verbose output (i.e. not capturing LAMMPS screen output).
bool verbose = false;
// we compare floating point numbers with 8 digits precision after the decimal point
static constexpr double EPSILON = 1.0e-8;
namespace LAMMPS_NS {
#define STRINGIFY(val) XSTR(val)
#define XSTR(val) #val
class ComputeChunkTest : public LAMMPSTest {
protected:
void SetUp() override
{
testbinary = "ComputeChunkTest";
LAMMPSTest::SetUp();
if (info->has_style("atom", "full")) {
BEGIN_HIDE_OUTPUT();
command("variable input_dir index \"" STRINGIFY(TEST_INPUT_FOLDER) "\"");
command("include \"${input_dir}/in.fourmol\"");
command("group allwater molecule 3:6");
command("region half block 0.0 INF INF INF INF INF");
command("compute tags all property/atom id");
command("compute bin1d all chunk/atom bin/1d x lower 3.0 units box");
command("compute bin2d all chunk/atom bin/2d x lower 3.0 y lower 3.0 units box");
command("compute bin3d all chunk/atom bin/3d x lower 3.0 y lower 3.0 z lower 3.0 units "
"box");
command("compute binsph all chunk/atom bin/sphere 0.0 0.0 0.0 0.01 6.01 6 units box");
command("compute bincyl all chunk/atom bin/cylinder z lower 3.0 1.0 1.0 0.01 6.01 6 "
"units box");
command("compute mols all chunk/atom molecule");
command("compute types all chunk/atom type");
END_HIDE_OUTPUT();
}
}
double get_scalar(const char *id)
{
return *(double *)lammps_extract_compute(lmp, id, LMP_STYLE_GLOBAL, LMP_TYPE_SCALAR);
}
double *get_vector(const char *id)
{
return (double *)lammps_extract_compute(lmp, id, LMP_STYLE_GLOBAL, LMP_TYPE_VECTOR);
}
double **get_array(const char *id)
{
return (double **)lammps_extract_compute(lmp, id, LMP_STYLE_GLOBAL, LMP_TYPE_ARRAY);
}
double *get_peratom(const char *id)
{
return (double *)lammps_extract_compute(lmp, id, LMP_STYLE_ATOM, LMP_TYPE_VECTOR);
}
};
static constexpr int chunk1d[] = {0, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3,
4, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 2, 2, 2};
static constexpr int chalf1d[] = {0, 0, 3, 0, 0, 0, 3, 3, 3, 3, 3, 3, 4, 4, 3,
4, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 0, 0, 0};
static constexpr int chunk2d[] = {0, 9, 14, 8, 9, 8, 13, 13, 13, 13, 13, 12, 18, 18, 13,
18, 12, 12, 14, 14, 14, 17, 17, 17, 14, 14, 14, 7, 7, 7};
static constexpr int chunk3d[] = {0, 43, 68, 38, 43, 38, 63, 62, 63, 63, 63, 58, 88, 88, 62,
88, 58, 59, 67, 67, 67, 82, 82, 82, 69, 69, 69, 34, 34, 34};
static constexpr int chunksph[] = {0, 3, 4, 2, 3, 2, 2, 3, 2, 2, 3, 4, 4, 5, 4,
4, 4, 4, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 5};
static constexpr int chunkcyl[] = {0, 8, 13, 8, 13, 8, 8, 7, 8, 8, 13, 18, 13, 18, 12,
13, 18, 19, 12, 7, 17, 27, 27, 27, 14, 14, 19, 29, 29, 29};
static constexpr int chunkmol[] = {0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6};
static constexpr int chunktyp[] = {0, 3, 2, 1, 2, 2, 1, 4, 3, 2, 1, 2, 1, 2, 2,
2, 1, 4, 4, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2};
TEST_F(ComputeChunkTest, ChunkAtom)
{
if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP();
BEGIN_HIDE_OUTPUT();
command("pair_style lj/cut/coul/cut 10.0");
command("pair_coeff * * 0.01 3.0");
command("bond_style harmonic");
command("bond_coeff * 100.0 1.5");
command("dump 1 all custom 1 compute_chunk_atom.lammpstrj "
"id c_bin1d c_bin2d c_bin3d c_binsph c_bincyl c_mols c_types c_tags");
command("run 0 post no");
END_HIDE_OUTPUT();
const int natoms = lammps_get_natoms(lmp);
EXPECT_EQ(get_scalar("bin1d"), 5);
EXPECT_EQ(get_scalar("bin2d"), 25);
EXPECT_EQ(get_scalar("bin3d"), 125);
EXPECT_EQ(get_scalar("binsph"), 6);
EXPECT_EQ(get_scalar("bincyl"), 30);
EXPECT_EQ(get_scalar("mols"), 6);
EXPECT_EQ(get_scalar("types"), 5);
auto *cbin1d = get_peratom("bin1d");
auto *cbin2d = get_peratom("bin2d");
auto *cbin3d = get_peratom("bin3d");
auto *cbinsph = get_peratom("binsph");
auto *cbincyl = get_peratom("bincyl");
auto *cmols = get_peratom("mols");
auto *ctypes = get_peratom("types");
auto *tag = get_peratom("tags");
for (int i = 0; i < natoms; ++i) {
EXPECT_EQ(cbin1d[i], chunk1d[(int)tag[i]]);
EXPECT_EQ(cbin2d[i], chunk2d[(int)tag[i]]);
EXPECT_EQ(cbin3d[i], chunk3d[(int)tag[i]]);
EXPECT_EQ(cbinsph[i], chunksph[(int)tag[i]]);
EXPECT_EQ(cbincyl[i], chunkcyl[(int)tag[i]]);
EXPECT_EQ(cmols[i], chunkmol[(int)tag[i]]);
EXPECT_EQ(ctypes[i], chunktyp[(int)tag[i]]);
}
BEGIN_HIDE_OUTPUT();
command("uncompute bin1d");
command("compute bin1d all chunk/atom bin/1d x lower 0.2 units reduced region half");
command("uncompute bin3d");
command("compute bin3d all chunk/atom bin/3d x lower 3.0 y lower 3.0 z lower 3.0 "
"compress yes units box");
END_HIDE_OUTPUT();
EXPECT_EQ(get_scalar("bin1d"), 5);
EXPECT_EQ(get_scalar("bin3d"), 12);
cbin1d = get_peratom("bin1d");
tag = get_peratom("tags");
for (int i = 0; i < natoms; ++i) {
EXPECT_EQ(cbin1d[i], chalf1d[(int)tag[i]]);
}
// cleanup
platform::unlink("compute_chunk_atom.lammpstrj");
}
TEST_F(ComputeChunkTest, PropertyChunk)
{
if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP();
BEGIN_HIDE_OUTPUT();
command("pair_style lj/cut/coul/cut 10.0");
command("pair_coeff * * 0.01 3.0");
command("bond_style harmonic");
command("bond_coeff * 100.0 1.5");
command("uncompute bin3d");
command("compute bin3d all chunk/atom bin/3d x lower 3.0 y lower 3.0 z lower 3.0 "
"compress yes units box");
command("compute prop1 all property/chunk bin1d count");
command("compute prop2 all property/chunk bin2d count");
command("compute prop3 all property/chunk bin3d id count");
command("fix hist1 all ave/time 1 1 1 c_prop1 mode vector");
command("fix hist2 all ave/time 1 1 1 c_prop2 mode vector");
command("fix hist3 all ave/time 1 1 1 c_prop3[*] mode vector");
command("run 0 post no");
END_HIDE_OUTPUT();
auto *cprop1 = get_vector("prop1");
EXPECT_EQ(cprop1[0], 0);
EXPECT_EQ(cprop1[1], 7);
EXPECT_EQ(cprop1[2], 16);
EXPECT_EQ(cprop1[3], 6);
EXPECT_EQ(cprop1[4], 0);
auto *cprop2 = get_vector("prop2");
int nempty = 0;
int ncount = 0;
for (int i = 0; i < 25; ++i) {
if (cprop2[i] == 0)
++nempty;
else
ncount += cprop2[i];
}
EXPECT_EQ(nempty, 17);
EXPECT_EQ(ncount, 29);
auto *cprop3 = get_array("prop3");
EXPECT_EQ(cprop3[0][0], 34);
EXPECT_EQ(cprop3[1][0], 38);
EXPECT_EQ(cprop3[2][0], 43);
EXPECT_EQ(cprop3[3][0], 58);
EXPECT_EQ(cprop3[4][0], 59);
EXPECT_EQ(cprop3[5][0], 62);
EXPECT_EQ(cprop3[6][0], 63);
EXPECT_EQ(cprop3[7][0], 67);
EXPECT_EQ(cprop3[8][0], 68);
EXPECT_EQ(cprop3[9][0], 69);
EXPECT_EQ(cprop3[10][0], 82);
EXPECT_EQ(cprop3[11][0], 88);
EXPECT_EQ(cprop3[0][1], 3);
EXPECT_EQ(cprop3[1][1], 2);
EXPECT_EQ(cprop3[2][1], 2);
EXPECT_EQ(cprop3[3][1], 2);
EXPECT_EQ(cprop3[4][1], 1);
EXPECT_EQ(cprop3[5][1], 2);
EXPECT_EQ(cprop3[6][1], 4);
EXPECT_EQ(cprop3[7][1], 3);
EXPECT_EQ(cprop3[8][1], 1);
EXPECT_EQ(cprop3[9][1], 3);
EXPECT_EQ(cprop3[10][1], 3);
EXPECT_EQ(cprop3[11][1], 3);
}
TEST_F(ComputeChunkTest, ChunkComputes)
{
if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP();
BEGIN_HIDE_OUTPUT();
command("pair_style lj/cut/coul/cut 10.0");
command("pair_coeff * * 0.01 3.0");
command("bond_style harmonic");
command("bond_coeff * 100.0 1.5");
command("compute ang all angmom/chunk mols");
command("compute com all com/chunk mols");
command("compute dip all dipole/chunk mols geometry");
command("compute gyr all gyration/chunk mols");
command("compute mom all inertia/chunk mols");
command("compute omg all omega/chunk mols");
command("compute tmp all temp/chunk mols com yes");
command("compute trq all torque/chunk mols");
command("compute vcm all vcm/chunk mols");
command("fix hist1 all ave/time 1 1 1 c_ang[*] c_com[*] c_dip[*] c_gyr c_mom[*] c_omg[*] "
"c_trq[*] c_vcm[*] mode vector");
command("fix hist2 all ave/time 1 1 1 c_tmp mode vector");
command("run 0 post no");
END_HIDE_OUTPUT();
auto *cang = get_array("ang");
auto *ccom = get_array("com");
auto *cdip = get_array("dip");
auto *cgyr = get_vector("gyr");
auto *cmom = get_array("mom");
auto *comg = get_array("omg");
auto *ctmp = get_vector("tmp");
auto *ctrq = get_array("trq");
auto *cvcm = get_array("vcm");
EXPECT_NEAR(cang[0][0], -0.01906982, EPSILON);
EXPECT_NEAR(cang[0][1], -0.02814532, EPSILON);
EXPECT_NEAR(cang[0][2], -0.03357393, EPSILON);
EXPECT_NEAR(cang[5][0], 0.00767837, EPSILON);
EXPECT_NEAR(cang[5][1], -0.00303138, EPSILON);
EXPECT_NEAR(cang[5][2], 0.00740977, EPSILON);
EXPECT_NEAR(ccom[1][0], 2.27051374, EPSILON);
EXPECT_NEAR(ccom[1][1], -1.21038876, EPSILON);
EXPECT_NEAR(ccom[1][2], -0.58581655, EPSILON);
EXPECT_NEAR(ccom[5][0], -1.98284693, EPSILON);
EXPECT_NEAR(ccom[5][1], -4.17351226, EPSILON);
EXPECT_NEAR(ccom[5][2], 2.04850072, EPSILON);
EXPECT_NEAR(cmom[2][0], 4.28810281, EPSILON);
EXPECT_NEAR(cmom[2][1], 4.99562488, EPSILON);
EXPECT_NEAR(cmom[2][2], 5.34954800, EPSILON);
EXPECT_NEAR(cmom[5][0], 3.06867233, EPSILON);
EXPECT_NEAR(cmom[5][1], 5.24202887, EPSILON);
EXPECT_NEAR(cmom[5][2], 6.06478557, EPSILON);
EXPECT_NEAR(comg[3][0], -0.00349423, EPSILON);
EXPECT_NEAR(comg[3][1], -0.00025062, EPSILON);
EXPECT_NEAR(comg[3][2], -0.00323573, EPSILON);
EXPECT_NEAR(comg[5][0], 0.00437315, EPSILON);
EXPECT_NEAR(comg[5][1], 0.00029335, EPSILON);
EXPECT_NEAR(comg[5][2], 0.00268517, EPSILON);
EXPECT_NEAR(ctrq[4][0], -0.94086086, EPSILON);
EXPECT_NEAR(ctrq[4][1], 0.56227336, EPSILON);
EXPECT_NEAR(ctrq[4][2], 0.75139995, EPSILON);
EXPECT_NEAR(ctrq[5][0], -0.07066910, EPSILON);
EXPECT_NEAR(ctrq[5][1], -0.58556032, EPSILON);
EXPECT_NEAR(ctrq[5][2], -0.81513604, EPSILON);
EXPECT_NEAR(cvcm[0][0], -0.00011274, EPSILON);
EXPECT_NEAR(cvcm[0][1], 0.00071452, EPSILON);
EXPECT_NEAR(cvcm[0][2], -0.00017908, EPSILON);
EXPECT_NEAR(cvcm[5][0], -0.00063326, EPSILON);
EXPECT_NEAR(cvcm[5][1], 0.00007092, EPSILON);
EXPECT_NEAR(cvcm[5][2], 0.00045545, EPSILON);
EXPECT_NEAR(cdip[0][3], 0.35912150, EPSILON);
EXPECT_NEAR(cdip[1][3], 0.68453713, EPSILON);
EXPECT_NEAR(cdip[2][3], 0.50272643, EPSILON);
EXPECT_NEAR(cdip[3][3], 0.50845862, EPSILON);
EXPECT_NEAR(cdip[4][3], 0.49757365, EPSILON);
EXPECT_NEAR(cdip[5][3], 0.49105019, EPSILON);
EXPECT_NEAR(cgyr[0], 1.48351858, EPSILON);
EXPECT_NEAR(cgyr[1], 1.56649567, EPSILON);
EXPECT_NEAR(cgyr[2], 0.55196552, EPSILON);
EXPECT_NEAR(cgyr[3], 0.54573649, EPSILON);
EXPECT_NEAR(cgyr[4], 0.54793875, EPSILON);
EXPECT_NEAR(cgyr[5], 0.54708204, EPSILON);
EXPECT_NEAR(ctmp[0], 1.08268576, EPSILON);
EXPECT_NEAR(ctmp[1], 1.61905718, EPSILON);
EXPECT_NEAR(ctmp[2], 1.41991778, EPSILON);
EXPECT_NEAR(ctmp[3], 0.55484671, EPSILON);
EXPECT_NEAR(ctmp[4], -0.06062938, EPSILON);
EXPECT_NEAR(ctmp[5], -0.09219489, EPSILON);
}
TEST_F(ComputeChunkTest, ChunkTIP4PComputes)
{
if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP();
if (!info->has_style("compute", "dipole/tip4p/chunk")) GTEST_SKIP();
BEGIN_HIDE_OUTPUT();
command("pair_style tip4p/cut 5 2 5 1 0.15 10.0");
command("pair_coeff * *");
command("bond_coeff * 0.9572");
command("angle_coeff * 104.52");
command("compute dip all dipole/tip4p/chunk mols geometry");
command("fix hist1 all ave/time 1 1 1 c_dip[*] mode vector");
command("run 0 post no");
END_HIDE_OUTPUT();
auto *cdip = get_array("dip");
EXPECT_NEAR(cdip[0][3], 0.35912150, EPSILON);
EXPECT_NEAR(cdip[1][3], 0.68453713, EPSILON);
EXPECT_NEAR(cdip[2][3], 0.50272643, EPSILON);
EXPECT_NEAR(cdip[3][3], 0.37828094, EPSILON);
EXPECT_NEAR(cdip[4][3], 0.37018279, EPSILON);
EXPECT_NEAR(cdip[5][3], 0.36532949, EPSILON);
}
TEST_F(ComputeChunkTest, ChunkSpreadGlobal)
{
if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP();
BEGIN_HIDE_OUTPUT();
command("pair_style lj/cut/coul/cut 10.0");
command("pair_coeff * * 0.01 3.0");
command("bond_style harmonic");
command("bond_coeff * 100.0 1.5");
command("compute gyr all gyration/chunk mols");
command("compute spr all chunk/spread/atom mols c_gyr");
command("compute glb all global/atom c_mols c_gyr");
command("variable odd atom ((id+1)%2)+1");
command("compute odd all global/atom v_odd c_gyr");
command("fix ave all ave/atom 1 1 1 c_spr c_glb c_odd");
command("run 0 post no");
END_HIDE_OUTPUT();
const int natoms = lammps_get_natoms(lmp);
auto *cgyr = get_vector("gyr");
auto *cspr = get_peratom("spr");
auto *cglb = get_peratom("glb");
auto *codd = get_peratom("odd");
auto *ctag = get_peratom("tags");
for (int i = 0; i < natoms; ++i) {
EXPECT_EQ(cspr[i], cgyr[chunkmol[(int)ctag[i]] - 1]);
EXPECT_EQ(cglb[i], cgyr[chunkmol[(int)ctag[i]] - 1]);
EXPECT_EQ(codd[i], cgyr[(((int)ctag[i] + 1) % 2)]);
}
}
TEST_F(ComputeChunkTest, ChunkReduce)
{
if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP();
BEGIN_HIDE_OUTPUT();
command("pair_style lj/cut/coul/cut 10.0");
command("pair_coeff * * 0.01 3.0");
command("bond_style harmonic");
command("bond_coeff * 100.0 1.5");
command("compute prp all property/chunk mols count");
command("variable one atom 1");
command("compute red all reduce/chunk mols sum v_one");
command("fix ave all ave/time 1 1 1 c_prp c_red mode vector");
command("run 0 post no");
END_HIDE_OUTPUT();
const int nchunks = get_scalar("mols");
auto *cprp = get_vector("prp");
auto *cred = get_vector("red");
for (int i = 0; i < nchunks; ++i)
EXPECT_EQ(cprp[i], cred[i]);
}
} // namespace LAMMPS_NS
int main(int argc, char **argv)
{
MPI_Init(&argc, &argv);
::testing::InitGoogleMock(&argc, argv);
// handle arguments passed via environment variable
if (const char *var = getenv("TEST_ARGS")) {
std::vector<std::string> env = LAMMPS_NS::utils::split_words(var);
for (auto arg : env) {
if (arg == "-v") {
verbose = true;
}
}
}
if ((argc > 1) && (strcmp(argv[1], "-v") == 0)) verbose = true;
int rv = RUN_ALL_TESTS();
MPI_Finalize();
return rv;
}
|