File: test_compute_chunk.cpp

package info (click to toggle)
lammps 20250204%2Bdfsg.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 474,368 kB
  • sloc: cpp: 1,060,070; python: 27,785; ansic: 8,956; f90: 7,254; sh: 6,044; perl: 4,171; fortran: 2,442; xml: 1,714; makefile: 1,352; objc: 238; lisp: 188; yacc: 58; csh: 16; awk: 14; tcl: 6; javascript: 2
file content (420 lines) | stat: -rw-r--r-- 16,095 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/* ----------------------------------------------------------------------
   LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
   https://www.lammps.org/, Sandia National Laboratories
   LAMMPS Development team: developers@lammps.org

   Copyright (2003) Sandia Corporation.  Under the terms of Contract
   DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
   certain rights in this software.  This software is distributed under
   the GNU General Public License.

   See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */

#include "../testing/core.h"
#include "info.h"
#include "lammps.h"
#include "library.h"
#include "utils.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"

#include <cstdio>
#include <mpi.h>

// whether to print verbose output (i.e. not capturing LAMMPS screen output).
bool verbose = false;

// we compare floating point numbers with 8 digits precision after the decimal point
static constexpr double EPSILON = 1.0e-8;

namespace LAMMPS_NS {

#define STRINGIFY(val) XSTR(val)
#define XSTR(val) #val

class ComputeChunkTest : public LAMMPSTest {
protected:
    void SetUp() override
    {
        testbinary = "ComputeChunkTest";
        LAMMPSTest::SetUp();
        if (info->has_style("atom", "full")) {
            BEGIN_HIDE_OUTPUT();
            command("variable input_dir index \"" STRINGIFY(TEST_INPUT_FOLDER) "\"");
            command("include \"${input_dir}/in.fourmol\"");
            command("group allwater molecule 3:6");
            command("region half block 0.0 INF INF INF INF INF");
            command("compute tags all property/atom id");
            command("compute bin1d all chunk/atom bin/1d x lower 3.0 units box");
            command("compute bin2d all chunk/atom bin/2d x lower 3.0 y lower 3.0 units box");
            command("compute bin3d all chunk/atom bin/3d x lower 3.0 y lower 3.0 z lower 3.0 units "
                    "box");
            command("compute binsph all chunk/atom bin/sphere 0.0 0.0 0.0 0.01 6.01 6 units box");
            command("compute bincyl all chunk/atom bin/cylinder z lower 3.0 1.0 1.0 0.01 6.01 6 "
                    "units box");
            command("compute mols all chunk/atom molecule");
            command("compute types all chunk/atom type");
            END_HIDE_OUTPUT();
        }
    }

    double get_scalar(const char *id)
    {
        return *(double *)lammps_extract_compute(lmp, id, LMP_STYLE_GLOBAL, LMP_TYPE_SCALAR);
    }

    double *get_vector(const char *id)
    {
        return (double *)lammps_extract_compute(lmp, id, LMP_STYLE_GLOBAL, LMP_TYPE_VECTOR);
    }

    double **get_array(const char *id)
    {
        return (double **)lammps_extract_compute(lmp, id, LMP_STYLE_GLOBAL, LMP_TYPE_ARRAY);
    }

    double *get_peratom(const char *id)
    {
        return (double *)lammps_extract_compute(lmp, id, LMP_STYLE_ATOM, LMP_TYPE_VECTOR);
    }
};

static constexpr int chunk1d[]  = {0, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3,
                                   4, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 2, 2, 2};
static constexpr int chalf1d[]  = {0, 0, 3, 0, 0, 0, 3, 3, 3, 3, 3, 3, 4, 4, 3,
                                   4, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 0, 0, 0};
static constexpr int chunk2d[]  = {0,  9,  14, 8,  9,  8,  13, 13, 13, 13, 13, 12, 18, 18, 13,
                                   18, 12, 12, 14, 14, 14, 17, 17, 17, 14, 14, 14, 7,  7,  7};
static constexpr int chunk3d[]  = {0,  43, 68, 38, 43, 38, 63, 62, 63, 63, 63, 58, 88, 88, 62,
                                   88, 58, 59, 67, 67, 67, 82, 82, 82, 69, 69, 69, 34, 34, 34};
static constexpr int chunksph[] = {0, 3, 4, 2, 3, 2, 2, 3, 2, 2, 3, 4, 4, 5, 4,
                                   4, 4, 4, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 5};
static constexpr int chunkcyl[] = {0,  8,  13, 8,  13, 8,  8,  7,  8,  8,  13, 18, 13, 18, 12,
                                   13, 18, 19, 12, 7,  17, 27, 27, 27, 14, 14, 19, 29, 29, 29};
static constexpr int chunkmol[] = {0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
                                   2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6};
static constexpr int chunktyp[] = {0, 3, 2, 1, 2, 2, 1, 4, 3, 2, 1, 2, 1, 2, 2,
                                   2, 1, 4, 4, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2};

TEST_F(ComputeChunkTest, ChunkAtom)
{
    if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP();

    BEGIN_HIDE_OUTPUT();
    command("pair_style lj/cut/coul/cut 10.0");
    command("pair_coeff * * 0.01 3.0");
    command("bond_style harmonic");
    command("bond_coeff * 100.0 1.5");
    command("dump 1 all custom 1 compute_chunk_atom.lammpstrj "
            "id c_bin1d c_bin2d c_bin3d c_binsph c_bincyl c_mols c_types c_tags");
    command("run 0 post no");
    END_HIDE_OUTPUT();

    const int natoms = lammps_get_natoms(lmp);
    EXPECT_EQ(get_scalar("bin1d"), 5);
    EXPECT_EQ(get_scalar("bin2d"), 25);
    EXPECT_EQ(get_scalar("bin3d"), 125);
    EXPECT_EQ(get_scalar("binsph"), 6);
    EXPECT_EQ(get_scalar("bincyl"), 30);
    EXPECT_EQ(get_scalar("mols"), 6);
    EXPECT_EQ(get_scalar("types"), 5);

    auto *cbin1d  = get_peratom("bin1d");
    auto *cbin2d  = get_peratom("bin2d");
    auto *cbin3d  = get_peratom("bin3d");
    auto *cbinsph = get_peratom("binsph");
    auto *cbincyl = get_peratom("bincyl");
    auto *cmols   = get_peratom("mols");
    auto *ctypes  = get_peratom("types");
    auto *tag     = get_peratom("tags");

    for (int i = 0; i < natoms; ++i) {
        EXPECT_EQ(cbin1d[i], chunk1d[(int)tag[i]]);
        EXPECT_EQ(cbin2d[i], chunk2d[(int)tag[i]]);
        EXPECT_EQ(cbin3d[i], chunk3d[(int)tag[i]]);
        EXPECT_EQ(cbinsph[i], chunksph[(int)tag[i]]);
        EXPECT_EQ(cbincyl[i], chunkcyl[(int)tag[i]]);
        EXPECT_EQ(cmols[i], chunkmol[(int)tag[i]]);
        EXPECT_EQ(ctypes[i], chunktyp[(int)tag[i]]);
    }

    BEGIN_HIDE_OUTPUT();
    command("uncompute bin1d");
    command("compute bin1d all chunk/atom bin/1d x lower 0.2 units reduced region half");
    command("uncompute bin3d");
    command("compute bin3d all chunk/atom bin/3d x lower 3.0 y lower 3.0 z lower 3.0 "
            "compress yes units box");
    END_HIDE_OUTPUT();
    EXPECT_EQ(get_scalar("bin1d"), 5);
    EXPECT_EQ(get_scalar("bin3d"), 12);

    cbin1d = get_peratom("bin1d");
    tag    = get_peratom("tags");
    for (int i = 0; i < natoms; ++i) {
        EXPECT_EQ(cbin1d[i], chalf1d[(int)tag[i]]);
    }

    // cleanup
    platform::unlink("compute_chunk_atom.lammpstrj");
}

TEST_F(ComputeChunkTest, PropertyChunk)
{
    if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP();

    BEGIN_HIDE_OUTPUT();
    command("pair_style lj/cut/coul/cut 10.0");
    command("pair_coeff * * 0.01 3.0");
    command("bond_style harmonic");
    command("bond_coeff * 100.0 1.5");
    command("uncompute bin3d");
    command("compute bin3d all chunk/atom bin/3d x lower 3.0 y lower 3.0 z lower 3.0 "
            "compress yes units box");
    command("compute prop1 all property/chunk bin1d count");
    command("compute prop2 all property/chunk bin2d count");
    command("compute prop3 all property/chunk bin3d id count");
    command("fix hist1 all ave/time 1 1 1 c_prop1 mode vector");
    command("fix hist2 all ave/time 1 1 1 c_prop2 mode vector");
    command("fix hist3 all ave/time 1 1 1 c_prop3[*] mode vector");
    command("run 0 post no");
    END_HIDE_OUTPUT();

    auto *cprop1 = get_vector("prop1");
    EXPECT_EQ(cprop1[0], 0);
    EXPECT_EQ(cprop1[1], 7);
    EXPECT_EQ(cprop1[2], 16);
    EXPECT_EQ(cprop1[3], 6);
    EXPECT_EQ(cprop1[4], 0);

    auto *cprop2 = get_vector("prop2");
    int nempty   = 0;
    int ncount   = 0;
    for (int i = 0; i < 25; ++i) {
        if (cprop2[i] == 0)
            ++nempty;
        else
            ncount += cprop2[i];
    }
    EXPECT_EQ(nempty, 17);
    EXPECT_EQ(ncount, 29);

    auto *cprop3 = get_array("prop3");
    EXPECT_EQ(cprop3[0][0], 34);
    EXPECT_EQ(cprop3[1][0], 38);
    EXPECT_EQ(cprop3[2][0], 43);
    EXPECT_EQ(cprop3[3][0], 58);
    EXPECT_EQ(cprop3[4][0], 59);
    EXPECT_EQ(cprop3[5][0], 62);
    EXPECT_EQ(cprop3[6][0], 63);
    EXPECT_EQ(cprop3[7][0], 67);
    EXPECT_EQ(cprop3[8][0], 68);
    EXPECT_EQ(cprop3[9][0], 69);
    EXPECT_EQ(cprop3[10][0], 82);
    EXPECT_EQ(cprop3[11][0], 88);

    EXPECT_EQ(cprop3[0][1], 3);
    EXPECT_EQ(cprop3[1][1], 2);
    EXPECT_EQ(cprop3[2][1], 2);
    EXPECT_EQ(cprop3[3][1], 2);
    EXPECT_EQ(cprop3[4][1], 1);
    EXPECT_EQ(cprop3[5][1], 2);
    EXPECT_EQ(cprop3[6][1], 4);
    EXPECT_EQ(cprop3[7][1], 3);
    EXPECT_EQ(cprop3[8][1], 1);
    EXPECT_EQ(cprop3[9][1], 3);
    EXPECT_EQ(cprop3[10][1], 3);
    EXPECT_EQ(cprop3[11][1], 3);
}

TEST_F(ComputeChunkTest, ChunkComputes)
{
    if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP();

    BEGIN_HIDE_OUTPUT();
    command("pair_style lj/cut/coul/cut 10.0");
    command("pair_coeff * * 0.01 3.0");
    command("bond_style harmonic");
    command("bond_coeff * 100.0 1.5");
    command("compute ang all angmom/chunk mols");
    command("compute com all com/chunk mols");
    command("compute dip all dipole/chunk mols geometry");
    command("compute gyr all gyration/chunk mols");
    command("compute mom all inertia/chunk mols");
    command("compute omg all omega/chunk mols");
    command("compute tmp all temp/chunk mols com yes");
    command("compute trq all torque/chunk mols");
    command("compute vcm all vcm/chunk mols");
    command("fix hist1 all ave/time 1 1 1 c_ang[*] c_com[*] c_dip[*] c_gyr c_mom[*] c_omg[*] "
            "c_trq[*] c_vcm[*] mode vector");
    command("fix hist2 all ave/time 1 1 1 c_tmp mode vector");
    command("run 0 post no");
    END_HIDE_OUTPUT();
    auto *cang = get_array("ang");
    auto *ccom = get_array("com");
    auto *cdip = get_array("dip");
    auto *cgyr = get_vector("gyr");
    auto *cmom = get_array("mom");
    auto *comg = get_array("omg");
    auto *ctmp = get_vector("tmp");
    auto *ctrq = get_array("trq");
    auto *cvcm = get_array("vcm");
    EXPECT_NEAR(cang[0][0], -0.01906982, EPSILON);
    EXPECT_NEAR(cang[0][1], -0.02814532, EPSILON);
    EXPECT_NEAR(cang[0][2], -0.03357393, EPSILON);
    EXPECT_NEAR(cang[5][0], 0.00767837, EPSILON);
    EXPECT_NEAR(cang[5][1], -0.00303138, EPSILON);
    EXPECT_NEAR(cang[5][2], 0.00740977, EPSILON);
    EXPECT_NEAR(ccom[1][0], 2.27051374, EPSILON);
    EXPECT_NEAR(ccom[1][1], -1.21038876, EPSILON);
    EXPECT_NEAR(ccom[1][2], -0.58581655, EPSILON);
    EXPECT_NEAR(ccom[5][0], -1.98284693, EPSILON);
    EXPECT_NEAR(ccom[5][1], -4.17351226, EPSILON);
    EXPECT_NEAR(ccom[5][2], 2.04850072, EPSILON);
    EXPECT_NEAR(cmom[2][0], 4.28810281, EPSILON);
    EXPECT_NEAR(cmom[2][1], 4.99562488, EPSILON);
    EXPECT_NEAR(cmom[2][2], 5.34954800, EPSILON);
    EXPECT_NEAR(cmom[5][0], 3.06867233, EPSILON);
    EXPECT_NEAR(cmom[5][1], 5.24202887, EPSILON);
    EXPECT_NEAR(cmom[5][2], 6.06478557, EPSILON);
    EXPECT_NEAR(comg[3][0], -0.00349423, EPSILON);
    EXPECT_NEAR(comg[3][1], -0.00025062, EPSILON);
    EXPECT_NEAR(comg[3][2], -0.00323573, EPSILON);
    EXPECT_NEAR(comg[5][0], 0.00437315, EPSILON);
    EXPECT_NEAR(comg[5][1], 0.00029335, EPSILON);
    EXPECT_NEAR(comg[5][2], 0.00268517, EPSILON);
    EXPECT_NEAR(ctrq[4][0], -0.94086086, EPSILON);
    EXPECT_NEAR(ctrq[4][1], 0.56227336, EPSILON);
    EXPECT_NEAR(ctrq[4][2], 0.75139995, EPSILON);
    EXPECT_NEAR(ctrq[5][0], -0.07066910, EPSILON);
    EXPECT_NEAR(ctrq[5][1], -0.58556032, EPSILON);
    EXPECT_NEAR(ctrq[5][2], -0.81513604, EPSILON);
    EXPECT_NEAR(cvcm[0][0], -0.00011274, EPSILON);
    EXPECT_NEAR(cvcm[0][1], 0.00071452, EPSILON);
    EXPECT_NEAR(cvcm[0][2], -0.00017908, EPSILON);
    EXPECT_NEAR(cvcm[5][0], -0.00063326, EPSILON);
    EXPECT_NEAR(cvcm[5][1], 0.00007092, EPSILON);
    EXPECT_NEAR(cvcm[5][2], 0.00045545, EPSILON);
    EXPECT_NEAR(cdip[0][3], 0.35912150, EPSILON);
    EXPECT_NEAR(cdip[1][3], 0.68453713, EPSILON);
    EXPECT_NEAR(cdip[2][3], 0.50272643, EPSILON);
    EXPECT_NEAR(cdip[3][3], 0.50845862, EPSILON);
    EXPECT_NEAR(cdip[4][3], 0.49757365, EPSILON);
    EXPECT_NEAR(cdip[5][3], 0.49105019, EPSILON);
    EXPECT_NEAR(cgyr[0], 1.48351858, EPSILON);
    EXPECT_NEAR(cgyr[1], 1.56649567, EPSILON);
    EXPECT_NEAR(cgyr[2], 0.55196552, EPSILON);
    EXPECT_NEAR(cgyr[3], 0.54573649, EPSILON);
    EXPECT_NEAR(cgyr[4], 0.54793875, EPSILON);
    EXPECT_NEAR(cgyr[5], 0.54708204, EPSILON);
    EXPECT_NEAR(ctmp[0], 1.08268576, EPSILON);
    EXPECT_NEAR(ctmp[1], 1.61905718, EPSILON);
    EXPECT_NEAR(ctmp[2], 1.41991778, EPSILON);
    EXPECT_NEAR(ctmp[3], 0.55484671, EPSILON);
    EXPECT_NEAR(ctmp[4], -0.06062938, EPSILON);
    EXPECT_NEAR(ctmp[5], -0.09219489, EPSILON);
}

TEST_F(ComputeChunkTest, ChunkTIP4PComputes)
{
    if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP();
    if (!info->has_style("compute", "dipole/tip4p/chunk")) GTEST_SKIP();

    BEGIN_HIDE_OUTPUT();
    command("pair_style tip4p/cut 5 2 5 1 0.15 10.0");
    command("pair_coeff * *");
    command("bond_coeff * 0.9572");
    command("angle_coeff * 104.52");
    command("compute dip all dipole/tip4p/chunk mols geometry");
    command("fix hist1 all ave/time 1 1 1 c_dip[*] mode vector");
    command("run 0 post no");
    END_HIDE_OUTPUT();
    auto *cdip = get_array("dip");
    EXPECT_NEAR(cdip[0][3], 0.35912150, EPSILON);
    EXPECT_NEAR(cdip[1][3], 0.68453713, EPSILON);
    EXPECT_NEAR(cdip[2][3], 0.50272643, EPSILON);
    EXPECT_NEAR(cdip[3][3], 0.37828094, EPSILON);
    EXPECT_NEAR(cdip[4][3], 0.37018279, EPSILON);
    EXPECT_NEAR(cdip[5][3], 0.36532949, EPSILON);
}

TEST_F(ComputeChunkTest, ChunkSpreadGlobal)
{
    if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP();

    BEGIN_HIDE_OUTPUT();
    command("pair_style lj/cut/coul/cut 10.0");
    command("pair_coeff * * 0.01 3.0");
    command("bond_style harmonic");
    command("bond_coeff * 100.0 1.5");
    command("compute gyr all gyration/chunk mols");
    command("compute spr all chunk/spread/atom mols c_gyr");
    command("compute glb all global/atom c_mols c_gyr");
    command("variable odd atom ((id+1)%2)+1");
    command("compute odd all global/atom v_odd c_gyr");
    command("fix ave all ave/atom 1 1 1 c_spr c_glb c_odd");
    command("run 0 post no");
    END_HIDE_OUTPUT();

    const int natoms = lammps_get_natoms(lmp);

    auto *cgyr = get_vector("gyr");
    auto *cspr = get_peratom("spr");
    auto *cglb = get_peratom("glb");
    auto *codd = get_peratom("odd");
    auto *ctag = get_peratom("tags");

    for (int i = 0; i < natoms; ++i) {
        EXPECT_EQ(cspr[i], cgyr[chunkmol[(int)ctag[i]] - 1]);
        EXPECT_EQ(cglb[i], cgyr[chunkmol[(int)ctag[i]] - 1]);
        EXPECT_EQ(codd[i], cgyr[(((int)ctag[i] + 1) % 2)]);
    }
}

TEST_F(ComputeChunkTest, ChunkReduce)
{
    if (lammps_get_natoms(lmp) == 0.0) GTEST_SKIP();

    BEGIN_HIDE_OUTPUT();
    command("pair_style lj/cut/coul/cut 10.0");
    command("pair_coeff * * 0.01 3.0");
    command("bond_style harmonic");
    command("bond_coeff * 100.0 1.5");
    command("compute prp all property/chunk mols count");
    command("variable one atom 1");
    command("compute red all reduce/chunk mols sum v_one");
    command("fix ave all ave/time 1 1 1 c_prp c_red mode vector");
    command("run 0 post no");
    END_HIDE_OUTPUT();

    const int nchunks = get_scalar("mols");

    auto *cprp = get_vector("prp");
    auto *cred = get_vector("red");

    for (int i = 0; i < nchunks; ++i)
        EXPECT_EQ(cprp[i], cred[i]);
}
} // namespace LAMMPS_NS

int main(int argc, char **argv)
{
    MPI_Init(&argc, &argv);
    ::testing::InitGoogleMock(&argc, argv);

    // handle arguments passed via environment variable
    if (const char *var = getenv("TEST_ARGS")) {
        std::vector<std::string> env = LAMMPS_NS::utils::split_words(var);
        for (auto arg : env) {
            if (arg == "-v") {
                verbose = true;
            }
        }
    }

    if ((argc > 1) && (strcmp(argv[1], "-v") == 0)) verbose = true;

    int rv = RUN_ALL_TESTS();
    MPI_Finalize();
    return rv;
}