1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
|
// THIS FILE USED TO BE EASY TO READ until I added "#if defined" statements.
// (They were added to test for many different kinds of array formats.)
#include "math_eigen_impl.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <random>
#include <vector>
using std::array;
using std::cerr;
using std::cout;
using std::endl;
using std::setprecision;
using std::vector;
using namespace MathEigen;
// This code works with various types of C++ matrices (for example,
// double **, vector<vector<double>> array<array<double,5>,5>).
// I use "#if defined" statements to test different matrix types.
// For some of these (eg. array<array<double,5>,5>), the size of the matrix
// must be known at compile time. I specify that size now.
#if defined USE_ARRAY_OF_ARRAYS
const int NF = 5; //(the array size must be known at compile time)
#elif defined USE_C_FIXED_SIZE_ARRAYS
const int NF = 5; //(the array size must be known at compile time)
#endif
// @brief Are two numbers "similar"?
template <typename Scalar>
inline static bool Similar(Scalar a, Scalar b, Scalar eps = 1.0e-06, Scalar ratio = 1.0e-06,
Scalar ratio_denom = 1.0)
{
return ((std::abs(a - b) <= std::abs(eps)) ||
(std::abs(ratio_denom) * std::abs(a - b) <=
std::abs(ratio) * 0.5 * (std::abs(a) + std::abs(b))));
}
/// @brief Are two vectors (containing n numbers) similar?
template <typename Scalar, typename Vector>
inline static bool SimilarVec(Vector a, Vector b, int n, Scalar eps = 1.0e-06,
Scalar ratio = 1.0e-06, Scalar ratio_denom = 1.0)
{
for (int i = 0; i < n; i++)
if (!Similar(a[i], b[i], eps, ratio, ratio_denom)) return false;
return true;
}
/// @brief Are two vectors (or their reflections) similar?
template <typename Scalar, typename Vector>
inline static bool SimilarVecUnsigned(Vector a, Vector b, int n, Scalar eps = 1.0e-06,
Scalar ratio = 1.0e-06, Scalar ratio_denom = 1.0)
{
if (SimilarVec(a, b, n, eps))
return true;
else {
for (int i = 0; i < n; i++)
if (!Similar(a[i], -b[i], eps, ratio, ratio_denom)) return false;
return true;
}
}
/// @brief Multiply two matrices A and B, store the result in C. (C = AB).
template <typename Matrix, typename ConstMatrix>
void mmult(ConstMatrix A, //<! input array
ConstMatrix B, //<! input array
Matrix C, //<! store result here
int m, //<! number of rows of A
int n = 0, //<! optional: number of columns of B (=m by default)
int K = 0 //<! optional: number of columns of A = num rows of B (=m by default)
)
{
if (n == 0) n = m; // if not specified, then assume the matrices are square
if (K == 0) K = m; // if not specified, then assume the matrices are square
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
C[i][j] = 0.0;
// perform matrix multiplication
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < K; k++)
C[i][j] += A[i][k] * B[k][j];
}
/// @brief
/// Sort the rows of a matrix "evec" by the numbers contained in "eval"
///(This is a simple O(n^2) sorting method, but O(n^2) is a lower bound anyway.)
/// This is the same as the Jacobi::SortRows(), but that function is private.
template <typename Scalar, typename Vector, typename Matrix>
void SortRows(Vector eval, Matrix evec, int n, bool sort_decreasing = true, bool sort_abs = false)
{
for (int i = 0; i < n - 1; i++) {
int i_max = i;
for (int j = i + 1; j < n; j++) {
if (sort_decreasing) {
if (sort_abs) { // sort by absolute value?
if (std::abs(eval[j]) > std::abs(eval[i_max])) i_max = j;
} else if (eval[j] > eval[i_max])
i_max = j;
} else {
if (sort_abs) { // sort by absolute value?
if (std::abs(eval[j]) < std::abs(eval[i_max])) i_max = j;
} else if (eval[j] < eval[i_max])
i_max = j;
}
}
std::swap(eval[i], eval[i_max]); // sort "eval"
for (int k = 0; k < n; k++)
std::swap(evec[i][k], evec[i_max][k]); // sort "evec"
}
}
/// @brief Generate a random orthonormal n x n matrix
template <typename Scalar, typename Matrix>
void GenRandOrth(Matrix R, int n, std::default_random_engine &rand_generator)
{
std::normal_distribution<Scalar> gaussian_distribution(0, 1);
std::vector<Scalar> v(n);
for (int i = 0; i < n; i++) {
// Generate a vector, "v", in a random direction subject to the constraint
// that it is orthogonal to the first i-1 rows-vectors of the R matrix.
Scalar rsq = 0.0;
while (rsq == 0.0) {
// Generate a vector in a random direction
// (This works because we are using a normal (Gaussian) distribution)
for (int j = 0; j < n; j++)
v[j] = gaussian_distribution(rand_generator);
// Now subtract from v, the projection of v onto the first i-1 rows of R.
// This will produce a vector which is orthogonal to these i-1 row-vectors.
//(They are already normalized and orthogonal to each other.)
for (int k = 0; k < i; k++) {
Scalar v_dot_Rk = 0.0;
for (int j = 0; j < n; j++)
v_dot_Rk += v[j] * R[k][j];
for (int j = 0; j < n; j++)
v[j] -= v_dot_Rk * R[k][j];
}
// check if it is linearly independent of the other vectors and non-zero
rsq = 0.0;
for (int j = 0; j < n; j++)
rsq += v[j] * v[j];
}
// Now normalize the vector
Scalar r_inv = 1.0 / std::sqrt(rsq);
for (int j = 0; j < n; j++)
v[j] *= r_inv;
// Now copy this vector to the i'th row of R
for (int j = 0; j < n; j++)
R[i][j] = v[j];
} // for (int i = 0; i < n; i++)
} // void GenRandOrth()
/// @brief Generate a random symmetric n x n matrix, M.
/// This function generates random numbers for the eigenvalues ("evals_known")
/// as well as the eigenvectors ("evecs_known"), and uses them to generate M.
/// The "eval_magnitude_range" argument specifies the the base-10 logarithm
/// of the range of eigenvalues desired. The "n_degeneracy" argument specifies
/// the number of repeated eigenvalues desired (if any).
/// @returns This function does not return a value. However after it is
/// invoked, the M matrix will be filled with random numbers.
/// Additionally, the "evals" and "evecs" arguments will contain
/// the eigenvalues and eigenvectors (one eigenvector per row)
/// of the matrix. Later, they can be compared with the eigenvalues
/// and eigenvectors calculated by Jacobi::Diagonalize()
template <typename Scalar, typename Vector, typename Matrix>
void GenRandSymm(Matrix M, //<! store the matrix here
int n, //<! matrix size
Vector evals, //<! store the eigenvalues of here
Matrix evecs, //<! store the eigenvectors here
std::default_random_engine &rand_generator, //<! makes random numbers
Scalar min_eval_size = 0.1, //<! minimum possible eigenvalue size
Scalar max_eval_size = 10.0, //<! maximum possible eigenvalue size
int n_degeneracy = 1 //<!number of repeated eigevalues(1disables)
)
{
assert(n_degeneracy <= n);
std::uniform_real_distribution<Scalar> random_real01;
std::normal_distribution<Scalar> gaussian_distribution(0, max_eval_size);
bool use_log_uniform_distribution = false;
if (min_eval_size > 0.0) use_log_uniform_distribution = true;
#if defined USE_VECTOR_OF_VECTORS
vector<vector<Scalar>> D(n, vector<Scalar>(n));
vector<vector<Scalar>> tmp(n, vector<Scalar>(n));
#elif defined USE_ARRAY_OF_ARRAYS
array<array<Scalar, NF>, NF> D;
array<array<Scalar, NF>, NF> tmp;
#elif defined USE_C_FIXED_SIZE_ARRAYS
Scalar D[NF][NF], tmp[NF][NF];
#else
#define USE_C_POINTER_TO_POINTERS
Scalar **D, **tmp;
Alloc2D(n, n, &D);
Alloc2D(n, n, &tmp);
#endif
// Randomly generate the eigenvalues
for (int i = 0; i < n; i++) {
if (use_log_uniform_distribution) {
// Use a "log-uniform distribution" (a.k.a. "reciprocal distribution")
// (This is a way to specify numbers with a precise range of magnitudes.)
assert((min_eval_size > 0.0) && (max_eval_size > 0.0));
Scalar log_min = std::log(std::abs(min_eval_size));
Scalar log_max = std::log(std::abs(max_eval_size));
Scalar log_eval = (log_min + random_real01(rand_generator) * (log_max - log_min));
evals[i] = std::exp(log_eval);
// also consider both positive and negative eigenvalues:
if (random_real01(rand_generator) < 0.5) evals[i] = -evals[i];
} else {
evals[i] = gaussian_distribution(rand_generator);
}
}
// Does the user want us to force some of the eigenvalues to be the same?
if (n_degeneracy > 1) {
int *permutation = new int[n]; // a random permutation from 0...n-1
for (int i = 0; i < n; i++)
permutation[i] = i;
std::shuffle(permutation, permutation + n, rand_generator);
for (int i = 1; i < n_degeneracy; i++) // set the first n_degeneracy to same
evals[permutation[i]] = evals[permutation[0]];
delete[] permutation;
}
// D is a diagonal matrix whose diagonal elements are the eigenvalues
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
D[i][j] = ((i == j) ? evals[i] : 0.0);
// Now randomly generate the (transpose of) the "evecs" matrix
GenRandOrth<Scalar, Matrix>(evecs, n, rand_generator); //(will transpose it later)
// Construct the test matrix, M, where M = Rt * D * R
// Original code:
// mmult(evecs, D, tmp, n); // <--> tmp = Rt * D
// Unfortunately, C++ guesses the types incorrectly. Must manually specify:
// #ifdefs making the code ugly again:
#if defined USE_VECTOR_OF_VECTORS
mmult<vector<vector<Scalar>> &, const vector<vector<Scalar>> &>
#elif defined USE_ARRAY_OF_ARRAYS
mmult<array<array<Scalar, NF>, NF> &, const array<array<Scalar, NF>, NF> &>
#elif defined USE_C_FIXED_SIZE_ARRAYS
mmult<Scalar(*)[NF], Scalar(*)[NF]>
#else
mmult<Scalar **, Scalar const *const *>
#endif
(evecs, D, tmp, n);
for (int i = 0; i < n - 1; i++)
for (int j = i + 1; j < n; j++)
std::swap(evecs[i][j], evecs[j][i]); // transpose "evecs"
// Original code:
// mmult(tmp, evecs, M, n);
// Unfortunately, C++ guesses the types incorrectly. Must manually specify:
// #ifdefs making the code ugly again:
#if defined USE_VECTOR_OF_VECTORS
mmult<vector<vector<Scalar>> &, const vector<vector<Scalar>> &>
#elif defined USE_ARRAY_OF_ARRAYS
mmult<array<array<Scalar, NF>, NF> &, const array<array<Scalar, NF>, NF> &>
#elif defined USE_C_FIXED_SIZE_ARRAYS
mmult<Scalar(*)[NF], Scalar(*)[NF]>
#else
mmult<Scalar **, Scalar const *const *>
#endif
(tmp, evecs, M, n);
// at this point M = Rt*D*R (where "R"="evecs")
#if defined USE_C_POINTER_TO_POINTERS
Dealloc2D(&D);
Dealloc2D(&tmp);
#endif
} // GenRandSymm()
template <typename Scalar>
void TestJacobi(int n, //<! matrix size
int n_matrices = 100, //<! number of matrices to test
Scalar min_eval_size = 0.1, //<! minimum possible eigenvalue sizw
Scalar max_eval_size = 10.0, //<! maximum possible eigenvalue size
int n_tests_per_matrix = 1, //<! repeat test for benchmarking?
int n_degeneracy = 1, //<! repeated eigenvalues?
unsigned seed = 0, //<! random seed (if 0 then use the clock)
Scalar eps = 1.0e-06)
{
bool test_code_coverage = false;
if (n_tests_per_matrix < 1) {
cout << "-- Testing code-coverage --" << endl;
test_code_coverage = true;
n_tests_per_matrix = 1;
}
cout << endl << "-- Diagonalization test (real symmetric) --" << endl;
// construct a random generator engine using a time-based seed:
if (seed == 0) // if the caller did not specify a seed, use the system clock
seed = std::chrono::system_clock::now().time_since_epoch().count();
std::default_random_engine rand_generator(seed);
// Create an instance of the Jacobi diagonalizer, and allocate the matrix
// we will test it on, as well as the arrays that will store the resulting
// eigenvalues and eigenvectors.
// The way we do this depends on what version of the code we are using.
// This is controlled by "#if defined" statements.
#if defined USE_VECTOR_OF_VECTORS
Jacobi<Scalar, vector<Scalar> &, vector<vector<Scalar>> &, const vector<vector<Scalar>> &>
ecalc(n);
// allocate the matrix, eigenvalues, eigenvectors
vector<vector<Scalar>> M(n, vector<Scalar>(n));
vector<vector<Scalar>> evecs(n, vector<Scalar>(n));
vector<vector<Scalar>> evecs_known(n, vector<Scalar>(n));
vector<Scalar> evals(n);
vector<Scalar> evals_known(n);
vector<Scalar> test_evec(n);
#elif defined USE_ARRAY_OF_ARRAYS
n = NF;
cout << "Testing std::array (fixed size).\n"
"(Ignoring first argument, and setting matrix size to "
<< n << ")" << endl;
Jacobi<Scalar, array<Scalar, NF> &, array<array<Scalar, NF>, NF> &,
const array<array<Scalar, NF>, NF> &>
ecalc(n);
// allocate the matrix, eigenvalues, eigenvectors
array<array<Scalar, NF>, NF> M;
array<array<Scalar, NF>, NF> evecs;
array<array<Scalar, NF>, NF> evecs_known;
array<Scalar, NF> evals;
array<Scalar, NF> evals_known;
array<Scalar, NF> test_evec;
#elif defined USE_C_FIXED_SIZE_ARRAYS
n = NF;
cout << "Testing C fixed size arrays.\n"
"(Ignoring first argument, and setting matrix size to "
<< n << ")" << endl;
Jacobi<Scalar, Scalar *, Scalar(*)[NF], Scalar const(*)[NF]> ecalc(n);
// allocate the matrix, eigenvalues, eigenvectors
Scalar M[NF][NF];
Scalar evecs[NF][NF];
Scalar evecs_known[NF][NF];
Scalar evals[NF];
Scalar evals_known[NF];
Scalar test_evec[NF];
#else
#define USE_C_POINTER_TO_POINTERS
// Note: Normally, you would just use this to instantiate Jacobi:
// Jacobi<Scalar, Scalar*, Scalar**, Scalar const*const*> ecalc(n);
// -------------------------
// ..but since Jacobi manages its own memory using new and delete, I also want
// to test that the copy constructors, copy operators, and destructors work.
// The following lines do this:
Jacobi<Scalar, Scalar *, Scalar **, Scalar const *const *> ecalc_test_mem1(n);
Jacobi<Scalar, Scalar *, Scalar **, Scalar const *const *> ecalc_test_mem2(2);
// test the = operator
ecalc_test_mem2 = ecalc_test_mem1;
// test the copy constructor
Jacobi<Scalar, Scalar *, Scalar **, Scalar const *const *> ecalc(ecalc_test_mem2);
// allocate the matrix, eigenvalues, eigenvectors
Scalar **M, **evecs, **evecs_known;
Alloc2D(n, n, &M);
Alloc2D(n, n, &evecs);
Alloc2D(n, n, &evecs_known);
auto *evals = new Scalar[n];
auto *evals_known = new Scalar[n];
auto *test_evec = new Scalar[n];
#endif
// --------------------------------------------------------------------
// Now, generate random matrices and test Jacobi::Diagonalize() on them.
// --------------------------------------------------------------------
for (int imat = 0; imat < n_matrices; imat++) {
// Create a randomly generated symmetric matrix.
// This function generates random numbers for the eigenvalues ("evals_known")
// as well as the eigenvectors ("evecs_known"), and uses them to generate M.
#if defined USE_VECTOR_OF_VECTORS
GenRandSymm<Scalar, vector<Scalar> &, vector<vector<Scalar>> &>
#elif defined USE_ARRAY_OF_ARRAYS
GenRandSymm<Scalar, array<Scalar, NF> &, array<array<Scalar, NF>, NF> &>
#elif defined USE_C_FIXED_SIZE_ARRAYS
GenRandSymm<Scalar, Scalar *, Scalar(*)[NF]>
#else
GenRandSymm<Scalar, Scalar *, Scalar **>
#endif
(M, n, evals_known, evecs_known, rand_generator, min_eval_size, max_eval_size,
n_degeneracy);
// Sort the matrix evals and eigenvector rows:
// Original code:
// SortRows<Scalar>(evals_known, evecs_known, n);
// Unfortunately, C++ guesses the types incorrectly. Must use #ifdefs again:
#if defined USE_VECTOR_OF_VECTORS
SortRows<Scalar, vector<Scalar> &, vector<vector<Scalar>> &>
#elif defined USE_ARRAY_OF_ARRAYS
SortRows<Scalar, array<Scalar, NF> &, array<array<Scalar, NF>, NF> &>
#elif defined USE_C_FIXED_SIZE_ARRAYS
SortRows<Scalar, Scalar *, Scalar(*)[NF]>
#else
SortRows<Scalar, Scalar *, Scalar **>
#endif
(evals_known, evecs_known, n);
if (n_matrices == 1) {
cout << "Eigenvalues (after sorting):\n";
for (int i = 0; i < n; i++)
cout << evals_known[i] << " ";
cout << "\n";
cout << "Eigenvectors (rows) which are known in advance:\n";
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
cout << evecs_known[i][j] << " ";
cout << "\n";
}
cout
<< " (The eigenvectors calculated by Jacobi::Diagonalize() should match these.)\n";
}
for (int i_test = 0; i_test < n_tests_per_matrix; i_test++) {
if (test_code_coverage) {
// test SORT_INCREASING_ABS_EVALS:
#if defined USE_VECTOR_OF_VECTORS
ecalc.Diagonalize(
M, evals, evecs,
Jacobi<Scalar, vector<Scalar> &, vector<vector<Scalar>> &,
const vector<vector<Scalar>> &>::SORT_INCREASING_ABS_EVALS);
#elif defined USE_ARRAY_OF_ARRAYS
ecalc.Diagonalize(
M, evals, evecs,
Jacobi<Scalar, array<Scalar, NF> &, array<array<Scalar, NF>, NF> &,
const array<array<Scalar, NF>, NF> &>::SORT_INCREASING_ABS_EVALS);
#elif defined USE_C_FIXED_SIZE_ARRAYS
ecalc.Diagonalize(M, evals, evecs,
Jacobi<Scalar, Scalar *, Scalar(*)[NF],
Scalar const(*)[NF]>::SORT_INCREASING_ABS_EVALS);
#else
ecalc.Diagonalize(M, evals, evecs,
Jacobi<Scalar, Scalar *, Scalar **,
Scalar const *const *>::SORT_INCREASING_ABS_EVALS);
#endif
for (int i = 1; i < n; i++)
assert(std::abs(evals[i - 1]) <= std::abs(evals[i]));
// test SORT_DECREASING_ABS_EVALS:
#if defined USE_VECTOR_OF_VECTORS
ecalc.Diagonalize(
M, evals, evecs,
Jacobi<Scalar, vector<Scalar> &, vector<vector<Scalar>> &,
const vector<vector<Scalar>> &>::SORT_DECREASING_ABS_EVALS);
#elif defined USE_ARRAY_OF_ARRAYS
ecalc.Diagonalize(
M, evals, evecs,
Jacobi<Scalar, array<Scalar, NF> &, array<array<Scalar, NF>, NF> &,
const array<array<Scalar, NF>, NF> &>::SORT_DECREASING_ABS_EVALS);
#elif defined USE_C_FIXED_SIZE_ARRAYS
ecalc.Diagonalize(M, evals, evecs,
Jacobi<Scalar, Scalar *, Scalar(*)[NF],
Scalar const(*)[NF]>::SORT_DECREASING_ABS_EVALS);
#else
ecalc.Diagonalize(M, evals, evecs,
Jacobi<Scalar, Scalar *, Scalar **,
Scalar const *const *>::SORT_DECREASING_ABS_EVALS);
#endif
for (int i = 1; i < n; i++)
assert(std::abs(evals[i - 1]) >= std::abs(evals[i]));
// test SORT_INCREASING_EVALS:
#if defined USE_VECTOR_OF_VECTORS
ecalc.Diagonalize(M, evals, evecs,
Jacobi<Scalar, vector<Scalar> &, vector<vector<Scalar>> &,
const vector<vector<Scalar>> &>::SORT_INCREASING_EVALS);
#elif defined USE_ARRAY_OF_ARRAYS
ecalc.Diagonalize(
M, evals, evecs,
Jacobi<Scalar, array<Scalar, NF> &, array<array<Scalar, NF>, NF> &,
const array<array<Scalar, NF>, NF> &>::SORT_INCREASING_EVALS);
#elif defined USE_C_FIXED_SIZE_ARRAYS
ecalc.Diagonalize(M, evals, evecs,
Jacobi<Scalar, Scalar *, Scalar(*)[NF],
Scalar const(*)[NF]>::SORT_INCREASING_EVALS);
#else
ecalc.Diagonalize(M, evals, evecs,
Jacobi<Scalar, Scalar *, Scalar **,
Scalar const *const *>::SORT_INCREASING_EVALS);
#endif
for (int i = 1; i < n; i++)
assert(evals[i - 1] <= evals[i]);
// test DO_NOT_SORT
#if defined USE_VECTOR_OF_VECTORS
ecalc.Diagonalize(M, evals, evecs,
Jacobi<Scalar, vector<Scalar> &, vector<vector<Scalar>> &,
const vector<vector<Scalar>> &>::DO_NOT_SORT);
#elif defined USE_ARRAY_OF_ARRAYS
ecalc.Diagonalize(
M, evals, evecs,
Jacobi<Scalar, array<Scalar, NF> &, array<array<Scalar, NF>, NF> &,
const array<array<Scalar, NF>, NF> &>::DO_NOT_SORT);
#elif defined USE_C_FIXED_SIZE_ARRAYS
ecalc.Diagonalize(
M, evals, evecs,
Jacobi<Scalar, Scalar *, Scalar(*)[NF], Scalar const(*)[NF]>::DO_NOT_SORT);
#else
ecalc.Diagonalize(
M, evals, evecs,
Jacobi<Scalar, Scalar *, Scalar **, Scalar const *const *>::DO_NOT_SORT);
#endif
} // if (test_code_coverage)
// Now (finally) calculate the eigenvalues and eigenvectors
int n_sweeps = ecalc.Diagonalize(M, evals, evecs);
if ((n_matrices == 1) && (i_test == 0)) {
cout << "Jacobi::Diagonalize() ran for " << n_sweeps << " iters (sweeps).\n";
cout << "Eigenvalues calculated by Jacobi::Diagonalize()\n";
for (int i = 0; i < n; i++)
cout << evals[i] << " ";
cout << "\n";
cout << "Eigenvectors (rows) calculated by Jacobi::Diagonalize()\n";
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
cout << evecs[i][j] << " ";
cout << "\n";
}
}
assert(SimilarVec(evals, evals_known, n, eps * max_eval_size, eps));
// Check that each eigenvector satisfies Mv = λv
// <--> Σ_b M[a][b]*evecs[i][b] = evals[i]*evecs[i][b] (for all a)
for (int i = 0; i < n; i++) {
for (int a = 0; a < n; a++) {
test_evec[a] = 0.0;
for (int b = 0; b < n; b++)
test_evec[a] += M[a][b] * evecs[i][b];
assert(Similar(test_evec[a], evals[i] * evecs[i][a],
eps, // tolerance (absolute difference)
eps * max_eval_size, // tolerance ratio (numerator)
evals_known[i] // tolerance ration (denominator)
));
}
}
} // for (int i_test = 0; i_test < n_tests_per_matrix; i++)
} // for(int imat = 0; imat < n_matrices; imat++) {
#if defined USE_C_POINTER_TO_POINTERS
Dealloc2D(&M);
Dealloc2D(&evecs);
Dealloc2D(&evecs_known);
delete[] evals;
delete[] evals_known;
delete[] test_evec;
#endif
} // TestJacobi()
int main(int argc, char **argv)
{
int n_size = 2;
int n_matr = 1;
double emin = 0.0;
double emax = 1.0;
int n_tests = 1;
int n_degeneracy = 1;
unsigned seed = 0;
if (argc <= 1) {
cerr << "Error: This program requires at least 1 argument.\n"
"\n"
"Description: Run Jacobi::Diagonalize() on randomly generated matrices.\n"
"\n"
"Arguments: n_size [n_matr emin emax n_degeneracy n_tests seed eps]\n"
" n_size = the size of the matrices\n"
" (NOTE: The remaining arguments are optional.)\n"
" n_matr = the number of randomly generated matrices to test\n"
" emin = the smallest possible eigenvalue magnitude (eg. 1e-05)\n"
" emax = the largest possible eigenvalue magnitude (>0 eg. 1e+05)\n"
" (NOTE: If emin=0, a normal distribution is used centered at 0.\n"
" Otherwise a log-uniform distribution is used from emin to emax.)\n"
" n_degeneracy = the number of repeated eigenvalues (1 disables, default)\n"
" n_tests = the number of times the eigenvalues and eigenvectors\n"
" are calculated for EACH matrix. By default this is 1.\n"
" (Increase this to at least 20 if you plan to use this\n"
" program for benchmarking (speed testing), because the time\n"
" needed for generating a random matrix is not negligible.)\n"
" (IF THIS NUMBER IS 0, it will test CODE-COVERAGE instead.)\n"
" seed = the seed used by the random number \"rand_generator\".\n"
" (If this number is 0, which is the default, the system\n"
" clock is used to choose a random seed.)\n"
" eps = the tolerance. The difference between eigenvalues and their\n"
" true value, cannot exceed this (multiplied by the eigenvalue\n"
" of maximum magnitude). Similarly, the difference between\n"
" the eigenvectors after multiplication by the matrix and by\n"
" and after multiplication by the eigenvalue, cannot exceed\n"
" eps*maximum_eigenvalue/eigenvalue. The default value is\n"
" 1.0e-06 (which works well for double precision numbers).\n"
<< endl;
return 1;
}
n_size = std::stoi(argv[1]);
if (argc > 2) n_matr = std::stoi(argv[2]);
if (argc > 3) emin = std::stof(argv[3]);
if (argc > 4) emax = std::stof(argv[4]);
if (argc > 5) n_degeneracy = std::stoi(argv[5]);
if (argc > 6) n_tests = std::stoi(argv[6]);
if (argc > 7) seed = std::stoi(argv[7]);
double eps = 1.0e-06;
if (argc > 8) eps = std::stof(argv[8]);
TestJacobi(n_size, n_matr, emin, emax, n_tests, n_degeneracy, seed, eps);
cout << "test passed\n" << endl;
return EXIT_SUCCESS;
}
|