File: min_cg2.cpp

package info (click to toggle)
lammps 20251210%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 465,808 kB
  • sloc: cpp: 1,031,565; python: 26,771; ansic: 8,808; f90: 7,302; sh: 5,316; perl: 4,171; fortran: 2,442; xml: 1,613; makefile: 1,119; objc: 238; lisp: 188; yacc: 58; csh: 16; awk: 14; tcl: 6; javascript: 2
file content (192 lines) | stat: -rw-r--r-- 5,698 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// clang-format off
/* ----------------------------------------------------------------------
   LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
   https://www.lammps.org/, Sandia National Laboratories
   LAMMPS development team: developers@lammps.org

   Copyright (2003) Sandia Corporation.  Under the terms of Contract
   DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
   certain rights in this software.  This software is distributed under
   the GNU General Public License.

   See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */

#include "min_cg2.h"

#include "error.h"
#include "output.h"
#include "timer.h"
#include "update.h"

#include <cmath>

using namespace LAMMPS_NS;

// EPS_ENERGY = minimum normalization for energy tolerance

static constexpr double EPS_ENERGY = 1.0e-8;

/* ---------------------------------------------------------------------- */

MinCG2::MinCG2(LAMMPS *lmp) : MinLineSearch(lmp) {}

/* ----------------------------------------------------------------------
   minimization via conjugate gradient iterations
------------------------------------------------------------------------- */

int MinCG2::iterate(int maxiter)
{
  int i,m,n,fail,ntimestep;
  double beta,gg,dot[2],dotall[2],fdotf;
  double *fatom,*gatom,*hatom;

  // nlimit = max # of CG iterations before restarting
  // set to ndoftotal unless too big

  int nlimit = static_cast<int> (MIN(MAXSMALLINT,ndoftotal));

  // initialize working vectors

  for (i = 0; i < nvec; i++) h[i] = g[i] = fvec[i];
  if (nextra_atom)
    for (m = 0; m < nextra_atom; m++) {
      fatom = fextra_atom[m];
      gatom = gextra_atom[m];
      hatom = hextra_atom[m];
      n = extra_nlen[m];
      for (i = 0; i < n; i++) hatom[i] = gatom[i] = fatom[i];
    }
  if (nextra_global)
    for (i = 0; i < nextra_global; i++) hextra[i] = gextra[i] = fextra[i];

  gg = fnorm_sqr();

  for (int iter = 0; iter < maxiter; iter++) {

    if (timer->check_timeout(niter))
      return TIMEOUT;

    ntimestep = ++update->ntimestep;
    niter++;

    // line minimization along direction h from current atom->x

    eprevious = ecurrent;
    fail = (this->*linemin)(ecurrent,alpha_final);
    if (fail) return fail;

    // function evaluation criterion

    if (neval >= update->max_eval) return MAXEVAL;

    // energy tolerance criterion

    if (fabs(ecurrent-eprevious) <
        update->etol * 0.5*(fabs(ecurrent) + fabs(eprevious) + EPS_ENERGY))
      return ETOL;

    // force tolerance criterion

    dot[0] = dot[1] = 0.0;
    for (i = 0; i < nvec; i++) {
      dot[0] += fvec[i]*fvec[i];
      dot[1] += fvec[i]*g[i];
    }

    if (nextra_atom)
      for (m = 0; m < nextra_atom; m++) {
        fatom = fextra_atom[m];
        gatom = gextra_atom[m];
        n = extra_nlen[m];
        for (i = 0; i < n; i++) {
          dot[0] += fatom[i]*fatom[i];
          dot[1] += fatom[i]*gatom[i];
        }
      }
    MPI_Allreduce(dot,dotall,2,MPI_DOUBLE,MPI_SUM,world);
    if (nextra_global)
      for (i = 0; i < nextra_global; i++) {
        dotall[0] += fextra[i]*fextra[i];
        dotall[1] += fextra[i]*gextra[i];
      }

    fdotf = 0.0;
    if (update->ftol > 0.0) {
      if (normstyle == MAX) fdotf = fnorm_max();        // max force norm
      else if (normstyle == INF) fdotf = fnorm_inf();   // infinite force norm
      else if (normstyle == TWO) fdotf = dotall[0];     // same as fnorm_sqr(), Euclidean force 2-norm
      else error->all(FLERR,"Illegal min_modify command");
      if (fdotf < update->ftol*update->ftol) return FTOL;
    }

    // update new search direction h from new f = -Grad(x) and old g
    // this is Polak-Ribieri formulation
    // beta = dotall[0]/gg would be Fletcher-Reeves
    // reinitialize CG every ndof iterations by setting beta = 0.0

    beta = MAX(0.0,(dotall[0] - dotall[1])/gg);
    if ((niter+1) % nlimit == 0) beta = 0.0;
    gg = dotall[0];

    for (i = 0; i < nvec; i++) {
      g[i] = fvec[i];
      h[i] = g[i] + beta*h[i];
    }
    if (nextra_atom)
      for (m = 0; m < nextra_atom; m++) {
        fatom = fextra_atom[m];
        gatom = gextra_atom[m];
        hatom = hextra_atom[m];
        n = extra_nlen[m];
        for (i = 0; i < n; i++) {
          gatom[i] = fatom[i];
          hatom[i] = gatom[i] + beta*hatom[i];
        }
      }
    if (nextra_global)
      for (i = 0; i < nextra_global; i++) {
        gextra[i] = fextra[i];
        hextra[i] = gextra[i] + beta*hextra[i];
      }

    // reinitialize CG if new search direction h is not downhill

    dot[0] = 0.0;
    for (i = 0; i < nvec; i++) dot[0] += g[i]*h[i];
    if (nextra_atom)
      for (m = 0; m < nextra_atom; m++) {
        gatom = gextra_atom[m];
        hatom = hextra_atom[m];
        n = extra_nlen[m];
        for (i = 0; i < n; i++) dot[0] += gatom[i]*hatom[i];
      }
    MPI_Allreduce(dot,dotall,1,MPI_DOUBLE,MPI_SUM,world);
    if (nextra_global)
      for (i = 0; i < nextra_global; i++)
        dotall[0] += gextra[i]*hextra[i];

    if (dotall[0] <= 0.0) {
      for (i = 0; i < nvec; i++) h[i] = g[i];
      if (nextra_atom)
        for (m = 0; m < nextra_atom; m++) {
          gatom = gextra_atom[m];
          hatom = hextra_atom[m];
          n = extra_nlen[m];
          for (i = 0; i < n; i++) hatom[i] = gatom[i];
        }
      if (nextra_global)
        for (i = 0; i < nextra_global; i++) hextra[i] = gextra[i];
    }

    // output for thermo, dump, restart files

    if (output->next == ntimestep) {
      timer->stamp();
      output->write(ntimestep);
      timer->stamp(Timer::OUTPUT);
    }
  }

  return MAXITER;
}