File: py_nve.py

package info (click to toggle)
lammps 20251210%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 465,808 kB
  • sloc: cpp: 1,031,565; python: 26,771; ansic: 8,808; f90: 7,302; sh: 5,316; perl: 4,171; fortran: 2,442; xml: 1,613; makefile: 1,119; objc: 238; lisp: 188; yacc: 58; csh: 16; awk: 14; tcl: 6; javascript: 2
file content (157 lines) | stat: -rw-r--r-- 5,167 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from __future__ import print_function
from lammps import lammps
import numpy as np

class LAMMPSFix(object):
    def __init__(self, ptr, group_name="all"):
        self.lmp = lammps(ptr=ptr)
        self.group_name = group_name

class LAMMPSFixMove(LAMMPSFix):
    def __init__(self, ptr, group_name="all"):
        super(LAMMPSFixMove, self).__init__(ptr, group_name)

    def init(self):
        pass

    def initial_integrate(self, vflag):
        pass

    def final_integrate(self):
        pass

    def initial_integrate_respa(self, vflag, ilevel, iloop):
        pass

    def final_integrate_respa(self, ilevel, iloop):
        pass

    def reset_dt(self):
        pass


class NVE(LAMMPSFixMove):
    """ Python implementation of fix/nve """
    def __init__(self, ptr, group_name="all"):
        super(NVE, self).__init__(ptr, group_name)
        assert(self.group_name == "all")

    def init(self):
        dt = self.lmp.extract_global("dt")
        ftm2v = self.lmp.extract_global("ftm2v")
        self.ntypes = self.lmp.extract_global("ntypes")
        self.dtv = dt
        self.dtf = 0.5 * dt * ftm2v

    def initial_integrate(self, vflag):
        mass = self.lmp.numpy.extract_atom("mass")
        atype = self.lmp.numpy.extract_atom("type")
        x = self.lmp.numpy.extract_atom("x")
        v = self.lmp.numpy.extract_atom("v")
        f = self.lmp.numpy.extract_atom("f")
        nlocal = self.lmp.extract_setting("nlocal")

        for i in range(nlocal):
            dtfm = self.dtf / mass[int(atype[i])]
            v[i,:]+= dtfm * f[i,:]
            x[i,:] += self.dtv * v[i,:]

    def final_integrate(self):
        mass = self.lmp.numpy.extract_atom("mass")
        atype = self.lmp.numpy.extract_atom("type")
        v = self.lmp.numpy.extract_atom("v")
        f = self.lmp.numpy.extract_atom("f")
        nlocal = self.lmp.extract_setting("nlocal")

        for i in range(nlocal):
            dtfm = self.dtf / mass[int(atype[i])]
            v[i,:] += dtfm * f[i,:]


class NVE_Opt(LAMMPSFixMove):
    """ Performance-optimized Python implementation of fix/nve """
    def __init__(self, ptr, group_name="all"):
        super(NVE_Opt, self).__init__(ptr, group_name)
        assert(self.group_name == "all")

    def init(self):
        dt = self.lmp.extract_global("dt")
        ftm2v = self.lmp.extract_global("ftm2v")
        self.ntypes = self.lmp.extract_global("ntypes")
        self.dtv = dt
        self.dtf = 0.5 * dt * ftm2v

    def initial_integrate(self, vflag):
        nlocal = self.lmp.extract_setting("nlocal")
        mass = self.lmp.numpy.extract_atom("mass")
        atype = self.lmp.numpy.extract_atom("type")
        x = self.lmp.numpy.extract_atom("x")[:nlocal,:]
        v = self.lmp.numpy.extract_atom("v")[:nlocal,:]
        f = self.lmp.numpy.extract_atom("f")[:nlocal,:]
        dtf = self.dtf
        dtv = self.dtv

        dtfm = dtf / np.take(mass, atype[:nlocal])

        for d in range(x.shape[1]):
            v[:,d] += dtfm * f[:,d]
            x[:,d] += dtv * v[:,d]

    def final_integrate(self):
        nlocal = self.lmp.extract_setting("nlocal")
        mass = self.lmp.numpy.extract_atom("mass")
        atype = self.lmp.numpy.extract_atom("type")
        v = self.lmp.numpy.extract_atom("v")[:nlocal,:]
        f = self.lmp.numpy.extract_atom("f")[:nlocal,:]

        dtf = self.dtf
        dtfm = dtf / np.take(mass, atype[:nlocal])

        for d in range(v.shape[1]):
            v[:,d] += dtfm * f[:,d]

class NVE_Group(LAMMPSFixMove):
    """ Python implementation of fix/nve with group"""
    def __init__(self, ptr, group_name="half"):
        super(NVE_Group, self).__init__(ptr, group_name)
        assert(self.group_name == "half")

    def init(self):
        dt = self.lmp.extract_global("dt")
        ftm2v = self.lmp.extract_global("ftm2v")
        self.ntypes = self.lmp.extract_global("ntypes")
        self.dtv = dt
        self.dtf = 0.5 * dt * ftm2v
        group_index = self.lmp.available_ids("group").index(self.group_name)
        self.group_mask = 1 << group_index

    def initial_integrate(self, vflag):
        mass = self.lmp.numpy.extract_atom("mass")
        atype = self.lmp.numpy.extract_atom("type")
        mask = self.lmp.numpy.extract_atom("mask")
        x = self.lmp.numpy.extract_atom("x")
        v = self.lmp.numpy.extract_atom("v")
        f = self.lmp.numpy.extract_atom("f")
        nlocal = self.lmp.extract_setting("nlocal")

        for i in range(nlocal):
            if mask[i] & self.group_mask:
                dtfm = self.dtf / mass[int(atype[i])]
                v[i,:]+= dtfm * f[i,:]
                x[i,:] += self.dtv * v[i,:]

    def final_integrate(self):
        mass = self.lmp.numpy.extract_atom("mass")
        mask = self.lmp.numpy.extract_atom("mask")
        atype = self.lmp.numpy.extract_atom("type")
        v = self.lmp.numpy.extract_atom("v")
        f = self.lmp.numpy.extract_atom("f")
        nlocal = self.lmp.extract_setting("nlocal")

        for i in range(nlocal):
            if mask[i] & self.group_mask:
                dtfm = self.dtf / mass[int(atype[i])]
                v[i,:] += dtfm * f[i,:]