1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
/***************************************************************************
edpd.cpp
-------------------
Trung Dac Nguyen (U Chicago)
Class for acceleration of the edpd pair style.
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin : September 2023
email : ndactrung@gmail.com
***************************************************************************/
#if defined(USE_OPENCL)
#include "edpd_cl.h"
#elif defined(USE_CUDART)
const char *edpd=0;
#else
#include "edpd_cubin.h"
#endif
#include "lal_edpd.h"
#include <cassert>
namespace LAMMPS_AL {
#define EDPDT EDPD<numtyp, acctyp>
extern Device<PRECISION,ACC_PRECISION> device;
template <class numtyp, class acctyp>
EDPDT::EDPD() : BaseDPD<numtyp,acctyp>(), _allocated(false) {
_max_q_size = 0;
}
template <class numtyp, class acctyp>
EDPDT::~EDPD() {
clear();
}
template <class numtyp, class acctyp>
int EDPDT::bytes_per_atom(const int max_nbors) const {
return this->bytes_per_atom_atomic(max_nbors);
}
template <class numtyp, class acctyp>
int EDPDT::init(const int ntypes,
double **host_cutsq, double **host_a0,
double **host_gamma, double **host_cut,
double **host_power, double **host_kappa,
double **host_powerT, double **host_cutT,
double ***host_sc, double ***host_kc, double *host_mass,
double *host_special_lj,
const int power_flag, const int kappa_flag,
const int nlocal, const int nall,
const int max_nbors, const int maxspecial,
const double cell_size,
const double gpu_split, FILE *_screen) {
const int max_shared_types=this->device->max_shared_types();
int onetype=0;
#ifdef USE_OPENCL
if (maxspecial==0)
for (int i=1; i<ntypes; i++)
for (int j=i; j<ntypes; j++)
if (host_cutsq[i][j]>0) {
if (onetype>0)
onetype=-1;
else if (onetype==0)
onetype=i*max_shared_types+j;
}
if (onetype<0) onetype=0;
#endif
int success;
int extra_fields = 4; // round up to accomodate quadruples of numtyp values
// T and cv
success=this->init_atomic(nlocal,nall,max_nbors,maxspecial,cell_size,
gpu_split,_screen,edpd,"k_edpd",onetype,extra_fields);
if (success!=0)
return success;
// If atom type constants fit in shared memory use fast kernel
int lj_types=ntypes;
shared_types=false;
if (lj_types<=max_shared_types && this->_block_size>=max_shared_types) {
lj_types=max_shared_types;
shared_types=true;
}
_lj_types=lj_types;
// Allocate a host write buffer for data initialization
UCL_H_Vec<numtyp> host_write(lj_types*lj_types*32,*(this->ucl_device),
UCL_WRITE_ONLY);
for (int i=0; i<lj_types*lj_types; i++)
host_write[i]=0.0;
coeff.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,coeff,host_write,host_a0,host_gamma,
host_cut);
coeff2.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,coeff2,host_write,host_power,host_kappa,
host_powerT,host_cutT);
UCL_H_Vec<numtyp> dview_mass(ntypes, *(this->ucl_device), UCL_WRITE_ONLY);
for (int i = 0; i < ntypes; i++)
dview_mass[i] = host_mass[i];
mass.alloc(ntypes,*(this->ucl_device), UCL_READ_ONLY);
ucl_copy(mass,dview_mass,false);
if (host_sc) {
UCL_H_Vec<numtyp4> dview(lj_types*lj_types,*(this->ucl_device),UCL_WRITE_ONLY);;
sc.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
int n = 0;
for (int i = 1; i < ntypes; i++)
for (int j = 1; j < ntypes; j++) {
dview[n].x = host_sc[i][j][0];
dview[n].y = host_sc[i][j][1];
dview[n].z = host_sc[i][j][2];
dview[n].w = host_sc[i][j][3];
n++;
}
ucl_copy(sc,dview,false);
}
if (host_kc) {
UCL_H_Vec<numtyp4> dview(lj_types*lj_types,*(this->ucl_device),UCL_WRITE_ONLY);;
kc.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
int n = 0;
for (int i = 1; i < ntypes; i++)
for (int j = 1; j < ntypes; j++) {
dview[n].x = host_kc[i][j][0];
dview[n].y = host_kc[i][j][1];
dview[n].z = host_kc[i][j][2];
dview[n].w = host_kc[i][j][3];
n++;
}
ucl_copy(kc,dview,false);
}
UCL_H_Vec<numtyp> host_rsq(lj_types*lj_types,*(this->ucl_device),
UCL_WRITE_ONLY);
cutsq.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack1(ntypes,lj_types,cutsq,host_rsq,host_cutsq);
double special_sqrt[4];
special_sqrt[0] = sqrt(host_special_lj[0]);
special_sqrt[1] = sqrt(host_special_lj[1]);
special_sqrt[2] = sqrt(host_special_lj[2]);
special_sqrt[3] = sqrt(host_special_lj[3]);
UCL_H_Vec<double> dview;
sp_lj.alloc(4,*(this->ucl_device),UCL_READ_ONLY);
dview.view(host_special_lj,4,*(this->ucl_device));
ucl_copy(sp_lj,dview,false);
sp_sqrt.alloc(4,*(this->ucl_device),UCL_READ_ONLY);
dview.view(special_sqrt,4,*(this->ucl_device));
ucl_copy(sp_sqrt,dview,false);
_power_flag = power_flag;
_kappa_flag = kappa_flag;
// allocate per-atom array Q
int ef_nall=nall;
if (ef_nall==0)
ef_nall=2000;
_max_q_size=static_cast<int>(static_cast<double>(ef_nall)*1.10);
Q.alloc(_max_q_size,*(this->ucl_device),UCL_READ_WRITE,UCL_READ_WRITE);
_allocated=true;
this->_max_bytes=coeff.row_bytes()+coeff2.row_bytes()+Q.row_bytes()+
sc.row_bytes()+kc.row_bytes()+mass.row_bytes()+cutsq.row_bytes()+sp_lj.row_bytes()+sp_sqrt.row_bytes();
return 0;
}
template <class numtyp, class acctyp>
void EDPDT::clear() {
if (!_allocated)
return;
_allocated=false;
coeff.clear();
coeff2.clear();
sc.clear();
kc.clear();
Q.clear();
mass.clear();
cutsq.clear();
sp_lj.clear();
sp_sqrt.clear();
this->clear_atomic();
}
template <class numtyp, class acctyp>
double EDPDT::host_memory_usage() const {
return this->host_memory_usage_atomic()+sizeof(EDPD<numtyp,acctyp>);
}
template <class numtyp, class acctyp>
void EDPDT::update_flux(void **flux_ptr) {
*flux_ptr=Q.host.begin();
Q.update_host(_max_q_size,false);
}
// ---------------------------------------------------------------------------
// Calculate energies, forces, and torques
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int EDPDT::loop(const int eflag, const int vflag) {
int nall = this->atom->nall();
// Resize Q array if necessary
if (nall > _max_q_size) {
_max_q_size=static_cast<int>(static_cast<double>(nall)*1.10);
Q.resize(_max_q_size);
}
// signal that we need to transfer extra data from the host
this->atom->extra_data_unavail();
numtyp4 *pextra=reinterpret_cast<numtyp4*>(&(this->atom->extra[0]));
int n = 0;
int nstride = 1;
for (int i = 0; i < nall; i++) {
int idx = n+i*nstride;
numtyp4 v;
v.x = edpd_temp[i];
v.y = edpd_cv[i];
v.z = 0;
v.w = 0;
pextra[idx] = v;
}
this->atom->add_extra_data();
// Compute the block size and grid size to keep all cores busy
const int BX=this->block_size();
int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/this->_threads_per_atom)));
int ainum=this->ans->inum();
int nbor_pitch=this->nbor->nbor_pitch();
this->time_pair.start();
if (shared_types) {
this->k_pair_sel->set_size(GX,BX);
this->k_pair_sel->run(&this->atom->x, &this->atom->extra, &coeff, &coeff2, &mass,
&sc, &kc, &sp_lj, &sp_sqrt, &this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->ans->force, &this->ans->engv, &Q, &eflag, &vflag,
&_power_flag, &_kappa_flag, &ainum, &nbor_pitch,
&this->atom->v, &cutsq, &this->_dtinvsqrt, &this->_seed,
&this->_timestep, &this->_threads_per_atom);
} else {
this->k_pair.set_size(GX,BX);
this->k_pair.run(&this->atom->x, &this->atom->extra, &coeff, &coeff2, &mass,
&sc, &kc, &_lj_types, &sp_lj, &sp_sqrt,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->ans->force, &this->ans->engv, &Q, &eflag, &vflag,
&_power_flag, &_kappa_flag, &ainum, &nbor_pitch,
&this->atom->v, &cutsq, &this->_dtinvsqrt, &this->_seed,
&this->_timestep, &this->_threads_per_atom);
}
this->time_pair.stop();
return GX;
}
// ---------------------------------------------------------------------------
// Get the extra data pointers from host
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void EDPDT::get_extra_data(double *host_T, double *host_cv) {
edpd_temp = host_T;
edpd_cv = host_cv;
}
template class EDPD<PRECISION,ACC_PRECISION>;
}
|