File: lal_hippo.cpp

package info (click to toggle)
lammps 20251210%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 465,808 kB
  • sloc: cpp: 1,031,565; python: 26,771; ansic: 8,808; f90: 7,302; sh: 5,316; perl: 4,171; fortran: 2,442; xml: 1,613; makefile: 1,119; objc: 238; lisp: 188; yacc: 58; csh: 16; awk: 14; tcl: 6; javascript: 2
file content (639 lines) | stat: -rw-r--r-- 25,807 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/***************************************************************************
                                 hippo.cpp
                             -------------------
                          Trung Dac Nguyen (Northwestern)

  Class for acceleration of the hippo pair style.

 __________________________________________________________________________
    This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
 __________________________________________________________________________

    begin                :
    email                : trung.nguyen@northwestern.edu
 ***************************************************************************/

#if defined(USE_OPENCL)
#include "hippo_cl.h"
#elif defined(USE_CUDART)
const char *hippo=0;
#else
#include "hippo_cubin.h"
#endif

#include "lal_hippo.h"
#include <cassert>
namespace LAMMPS_AL {
#define HippoT Hippo<numtyp, acctyp>

extern Device<PRECISION,ACC_PRECISION> device;

template <class numtyp, class acctyp>
HippoT::Hippo() : BaseAmoeba<numtyp,acctyp>(),
  _allocated(false) {
}

template <class numtyp, class acctyp>
HippoT::~Hippo() {
  clear();
  k_repulsion.clear();
  k_dispersion.clear();

}

template <class numtyp, class acctyp>
int HippoT::bytes_per_atom(const int max_nbors) const {
  return this->bytes_per_atom_atomic(max_nbors);
}

template <class numtyp, class acctyp>
int HippoT::init(const int ntypes, const int max_amtype, const int max_amclass,
                 const double *host_pdamp, const double *host_thole,
                 const double *host_dirdamp, const int *host_amtype2class,
                 const double *host_special_repel, const double *host_special_disp,
                 const double *host_special_mpole,
                 const double *host_special_polar_wscale,
                 const double *host_special_polar_piscale,
                 const double *host_special_polar_pscale,
                 const double *host_sizpr, const double *host_dmppr, const double *host_elepr,
                 const double *host_csix, const double *host_adisp,
                 const double *host_pcore, const double *host_palpha,
                 const int nlocal, const int nall, const int max_nbors,
                 const int maxspecial, const int maxspecial15,
                 const double cell_size, const double gpu_split, FILE *_screen,
                 const double polar_dscale, const double polar_uscale) {
  int success;
  success=this->init_atomic(nlocal,nall,max_nbors,maxspecial,maxspecial15,
                            cell_size,gpu_split,_screen,hippo,
                            "k_hippo_multipole", "k_hippo_udirect2b",
                            "k_hippo_umutual2b", "k_hippo_polar",
                            "k_hippo_fphi_uind", "k_hippo_fphi_mpole",
                            "k_hippo_short_nbor", "k_hippo_special15");
  if (success!=0)
    return success;

  // specific to HIPPO
  k_repulsion.set_function(*(this->pair_program),"k_hippo_repulsion");
  k_dispersion.set_function(*(this->pair_program),"k_hippo_dispersion");

  // If atom type constants fit in shared memory use fast kernel
  int lj_types=ntypes;
  shared_types=false;
  int max_shared_types=this->device->max_shared_types();
  if (lj_types<=max_shared_types && this->_block_size>=max_shared_types) {
    lj_types=max_shared_types;
    shared_types=true;
  }
  _lj_types=lj_types;

  // Allocate a host write buffer for data initialization

  UCL_H_Vec<numtyp4> host_write(max_amtype, *(this->ucl_device), UCL_WRITE_ONLY);
  for (int i = 0; i < max_amtype; i++) {
    host_write[i].x = host_pdamp[i];
    host_write[i].y = host_thole[i];
    host_write[i].z = host_dirdamp[i];
    host_write[i].w = host_amtype2class[i];
  }

  coeff_amtype.alloc(max_amtype,*(this->ucl_device), UCL_READ_ONLY);
  ucl_copy(coeff_amtype,host_write,false);

  for (int i = 0; i < max_amtype; i++) {
    host_write[i].x = host_sizpr[i];
    host_write[i].y = host_dmppr[i];
    host_write[i].z = host_elepr[i];
    host_write[i].w = (numtyp)0;
  }

  coeff_rep.alloc(max_amtype,*(this->ucl_device), UCL_READ_ONLY);
  ucl_copy(coeff_rep,host_write,false);

  UCL_H_Vec<numtyp4> host_write2(max_amclass, *(this->ucl_device), UCL_WRITE_ONLY);
  for (int i = 0; i < max_amclass; i++) {
    host_write2[i].x = host_csix[i];
    host_write2[i].y = host_adisp[i];
    host_write2[i].z = host_pcore[i];
    host_write2[i].w = host_palpha[i];
  }

  coeff_amclass.alloc(max_amclass,*(this->ucl_device), UCL_READ_ONLY);
  ucl_copy(coeff_amclass,host_write2,false);

  UCL_H_Vec<numtyp4> dview(5, *(this->ucl_device), UCL_WRITE_ONLY);
  sp_polar.alloc(5,*(this->ucl_device),UCL_READ_ONLY);
  for (int i=0; i<5; i++) {
    dview[i].x=host_special_polar_wscale[i];
    dview[i].y=host_special_polar_piscale[i];
    dview[i].z=host_special_polar_pscale[i];
    dview[i].w=host_special_mpole[i];
  }
  ucl_copy(sp_polar,dview,5,false);

  sp_nonpolar.alloc(5,*(this->ucl_device),UCL_READ_ONLY);
  for (int i=0; i<5; i++) {
    dview[i].x=host_special_repel[i];
    dview[i].y=host_special_disp[i];
    dview[i].z=(numtyp)0;
    dview[i].w=(numtyp)0;
  }
  ucl_copy(sp_nonpolar,dview,5,false);

  _polar_dscale = polar_dscale;
  _polar_uscale = polar_uscale;

  _allocated=true;
  this->_max_bytes=coeff_amtype.row_bytes() + coeff_rep.row_bytes()
    + coeff_amclass.row_bytes() + sp_polar.row_bytes()
    + sp_nonpolar.row_bytes() + this->_tep.row_bytes()
    + this->_fieldp.row_bytes() + this->_thetai1.row_bytes()
    + this->_thetai2.row_bytes()  + this->_thetai3.row_bytes()
    + this->_igrid.row_bytes() + this->_cgrid_brick.row_bytes();
  return 0;
}

template <class numtyp, class acctyp>
void HippoT::clear() {
  if (!_allocated)
    return;
  _allocated=false;

  coeff_amtype.clear();
  coeff_rep.clear();
  coeff_amclass.clear();
  sp_polar.clear();
  sp_nonpolar.clear();

  this->clear_atomic();
}

template <class numtyp, class acctyp>
double HippoT::host_memory_usage() const {
  return this->host_memory_usage_atomic()+sizeof(Hippo<numtyp,acctyp>);
}

// ---------------------------------------------------------------------------
// Compute the repulsion term, returning tep
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void HippoT::compute_repulsion(const int /*ago*/, const int inum_full,
                               const int /*nall*/, double ** /*host_x*/,
                               int * /*host_type*/, int * /*host_amtype*/,
                               int * /*host_amgroup*/, double ** /*host_rpole*/,
                               double * /*sublo*/, double * /*subhi*/, tagint * /*tag*/,
                               int ** /*nspecial*/, tagint ** /*special*/,
                               int * /*nspecial15*/, tagint ** /*special15*/,
                               const bool eflag_in, const bool vflag_in,
                               const bool eatom, const bool vatom,
                               int & /*host_start*/, int ** /*ilist*/, int ** /*jnum*/,
                               const double /*cpu_time*/, bool & /*success*/,
                               const double /*aewald*/, const double off2_repulse,
                               double * /*host_q*/, double * /*boxlo*/, double * /*prd*/,
                               double cut2, double c0, double c1, double c2,
                               double c3, double c4, double c5, void **tep_ptr) {
  this->acc_timers();
  int eflag, vflag;
  if (eatom) eflag=2;
  else if (eflag_in) eflag=1;
  else eflag=0;
  if (vatom) vflag=2;
  else if (vflag_in) vflag=1;
  else vflag=0;

  #ifdef LAL_NO_BLOCK_REDUCE
  if (eflag) eflag=2;
  if (vflag) vflag=2;
  #endif

  this->set_kernel(eflag,vflag);

  // ------------------- Resize _tep array ------------------------

  if (inum_full>this->_max_tep_size) {
    this->_max_tep_size=static_cast<int>(static_cast<double>(inum_full)*1.10);
    this->_tep.resize(this->_max_tep_size*3);
  }
  *tep_ptr=this->_tep.host.begin();

  this->_off2_repulse = off2_repulse;
  _cut2 = cut2;
  _c0 = c0;
  _c1 = c1;
  _c2 = c2;
  _c3 = c3;
  _c4 = c4;
  _c5 = c5;
  repulsion(this->_eflag,this->_vflag);

  // copy tep from device to host
  this->_tep.update_host(this->_max_tep_size*3,false);
}

// ---------------------------------------------------------------------------
// Launch the repulsion kernel
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int HippoT::repulsion(const int eflag, const int vflag) {
  int ainum=this->ans->inum();
  if (ainum == 0)
    return 0;

  int _nall=this->atom->nall();
  int nbor_pitch=this->nbor->nbor_pitch();

  // Compute the block size and grid size to keep all cores busy
  const int BX=this->block_size();
  int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
                               (BX/this->_threads_per_atom)));
  this->time_pair.start();

  // Build the short neighbor list for the cutoff off2_disp,
  //   at this point repuslion is the first kernel in a time step for HIPPO

  this->k_short_nbor.set_size(GX,BX);
  this->k_short_nbor.run(&this->atom->x, &this->nbor->dev_nbor,
                         &this->_nbor_data->begin(),
                         &this->dev_short_nbor, &this->_off2_repulse, &ainum,
                         &nbor_pitch, &this->_threads_per_atom);

  k_repulsion.set_size(GX,BX);
  k_repulsion.run(&this->atom->x, &this->atom->extra,
                  &coeff_rep, &sp_nonpolar,
                  &this->nbor->dev_nbor, &this->_nbor_data->begin(),
                  &this->dev_short_nbor,
                  &this->ans->force, &this->ans->engv, &this->_tep,
                  &eflag, &vflag, &ainum, &_nall, &nbor_pitch,
                  &this->_threads_per_atom,  &this->_aewald,
                  &this->_off2_repulse, &_cut2,
                  &_c0, &_c1, &_c2, &_c3, &_c4, &_c5);
  this->time_pair.stop();

  return GX;
}

// ---------------------------------------------------------------------------
// Compute dispersion real-space
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void HippoT::compute_dispersion_real(int *host_amtype, int *host_amgroup,
                                      double **host_rpole, const double aewald,
                                      const double off2_disp) {

  // cast necessary data arrays from host to device

  this->cast_extra_data(host_amtype, host_amgroup, host_rpole,
                        nullptr, nullptr, nullptr);
  this->atom->add_extra_data();

  this->_off2_disp = off2_disp;
  this->_aewald = aewald;
  dispersion_real(this->_eflag,this->_vflag);

  // only copy them back if this is the last kernel
  //   otherwise, commenting out these two lines to leave the answers
  //   (forces, energies and virial) on the device until the last kernel
  //this->ans->copy_answers(eflag_in,vflag_in,eatom,vatom,red_blocks);
  //this->device->add_ans_object(this->ans);
}

// ---------------------------------------------------------------------------
// Launch the dispersion real-space kernel
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int HippoT::dispersion_real(const int eflag, const int vflag) {
  int ainum=this->ans->inum();
  if (ainum == 0)
    return 0;

  int _nall=this->atom->nall();
  int nbor_pitch=this->nbor->nbor_pitch();

  // Compute the block size and grid size to keep all cores busy
  const int BX=this->block_size();
  int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
                               (BX/this->_threads_per_atom)));
  this->time_pair.start();

  // Build the short neighbor list for the cutoff off2_disp,
  //   at this point dispersion is the first kernel in a time step

  this->k_short_nbor.set_size(GX,BX);
  this->k_short_nbor.run(&this->atom->x, &this->nbor->dev_nbor,
                         &this->_nbor_data->begin(),
                         &this->dev_short_nbor, &this->_off2_disp, &ainum,
                         &nbor_pitch, &this->_threads_per_atom);

  k_dispersion.set_size(GX,BX);
  k_dispersion.run(&this->atom->x, &this->atom->extra,
                   &coeff_amtype, &coeff_amclass, &sp_nonpolar,
                   &this->nbor->dev_nbor, &this->_nbor_data->begin(),
                   &this->dev_short_nbor,
                   &this->ans->force, &this->ans->engv,
                   &eflag, &vflag, &ainum, &_nall, &nbor_pitch,
                   &this->_threads_per_atom,  &this->_aewald,
                   &this->_off2_disp);
  this->time_pair.stop();

  return GX;
}

// ---------------------------------------------------------------------------
// Compute the multipole real-space term, returning tep
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void HippoT::compute_multipole_real(const int /*ago*/, const int inum_full,
                                    const int /*nall*/, double ** /*host_x*/,
                                    int * /*host_type*/, int * /*host_amtype*/,
                                    int * /*host_amgroup*/, double ** /*host_rpole*/,
                                    double* host_pval, double * /*sublo*/,
                                    double * /*subhi*/, tagint * /*tag*/,
                                    int ** /*nspecial*/, tagint ** /*special*/,
                                    int * /*nspecial15*/, tagint ** /*special15*/,
                                    const bool /*eflag_in*/, const bool /*vflag_in*/,
                                    const bool /*eatom*/, const bool /*vatom*/,
                                    int & /*host_start*/, int ** /*ilist*/, int ** /*jnum*/,
                                    const double /*cpu_time*/, bool & /*success*/,
                                     const double aewald, const double felec,
                                    const double off2_mpole, double * /*host_q*/,
                                    double * /*boxlo*/, double * /*prd*/, void **tep_ptr) {

  // cast necessary data arrays from host to device

  this->cast_extra_data(nullptr, nullptr, nullptr, nullptr, nullptr, host_pval);
  this->atom->add_extra_data();

  // ------------------- Resize _tep array ------------------------

  if (inum_full>this->_max_tep_size) {
    this->_max_tep_size=static_cast<int>(static_cast<double>(inum_full)*1.10);
    this->_tep.resize(this->_max_tep_size*3);
  }
  *tep_ptr=this->_tep.host.begin();

  this->_off2_mpole = off2_mpole;
  this->_felec = felec;
  this->_aewald = aewald;
  multipole_real(this->_eflag,this->_vflag);

  // copy tep from device to host
  this->_tep.update_host(this->_max_tep_size*3,false);
}

// ---------------------------------------------------------------------------
// Launch the multipole real-space kernel
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int HippoT::multipole_real(const int eflag, const int vflag) {
  int ainum=this->ans->inum();
  if (ainum == 0)
    return 0;

  int _nall=this->atom->nall();
  int nbor_pitch=this->nbor->nbor_pitch();

  // Compute the block size and grid size to keep all cores busy
  const int BX=this->block_size();
  int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
                               (BX/this->_threads_per_atom)));
  this->time_pair.start();

  // Build the short neighbor list for the cutoff off2_mpole

  this->k_short_nbor.set_size(GX,BX);
  this->k_short_nbor.run(&this->atom->x, &this->nbor->dev_nbor,
                         &this->_nbor_data->begin(),
                         &this->dev_short_nbor, &this->_off2_mpole, &ainum,
                         &nbor_pitch, &this->_threads_per_atom);

  this->k_multipole.set_size(GX,BX);
  this->k_multipole.run(&this->atom->x, &this->atom->extra,
                        &coeff_amtype, &coeff_amclass, &sp_polar,
                        &this->nbor->dev_nbor, &this->_nbor_data->begin(),
                        &this->dev_short_nbor,
                        &this->ans->force, &this->ans->engv, &this->_tep,
                        &eflag, &vflag, &ainum, &_nall, &nbor_pitch,
                        &this->_threads_per_atom,  &this->_aewald, &this->_felec,
                        &this->_off2_mpole, &_polar_dscale, &_polar_uscale);
  this->time_pair.stop();

  return GX;
}

// ---------------------------------------------------------------------------
// Compute the direct real space part of the permanent field
//   returning field and fieldp
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void HippoT::compute_udirect2b(int * /*host_amtype*/, int * /*host_amgroup*/, double ** /*host_rpole*/,
                                double **host_uind, double **host_uinp, double* host_pval,
                                const double aewald, const double off2_polar,
                                void** fieldp_ptr) {

  // all the necessary data arrays are already copied from host to device

  this->cast_extra_data(nullptr, nullptr, nullptr, host_uind, host_uinp, host_pval);
  this->atom->add_extra_data();

  if (this->_max_tep_size>this->_max_fieldp_size) {
    this->_max_fieldp_size = this->_max_tep_size;
    this->_fieldp.resize(this->_max_fieldp_size*6);
  }
  *fieldp_ptr=this->_fieldp.host.begin();

  this->_off2_polar = off2_polar;
  this->_aewald = aewald;
  udirect2b(this->_eflag,this->_vflag);

  // copy field and fieldp from device to host (_fieldp store both arrays, one after another)

  this->_fieldp.update_host(this->_max_fieldp_size*6,false);
}

// ---------------------------------------------------------------------------
// Launch the real-space permanent field kernel
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int HippoT::udirect2b(const int /*eflag*/, const int /*vflag*/) {
  int ainum=this->ans->inum();
  if (ainum == 0)
    return 0;

  int _nall=this->atom->nall();
  int nbor_pitch=this->nbor->nbor_pitch();

  // Compute the block size and grid size to keep all cores busy
  const int BX=this->block_size();
  int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
                               (BX/this->_threads_per_atom)));
  this->time_pair.start();

  // Build the short neighbor list for the cutoff _off2_polar, if not done yet
  //   this is the first kernel in a time step where _off2_polar is used

  if (!this->short_nbor_polar_avail) {
    this->k_short_nbor.set_size(GX,BX);
    this->k_short_nbor.run(&this->atom->x, &this->nbor->dev_nbor,
                           &this->_nbor_data->begin(),
                           &this->dev_short_nbor, &this->_off2_polar, &ainum,
                           &nbor_pitch, &this->_threads_per_atom);
    this->short_nbor_polar_avail = true;
  }

  this->k_udirect2b.set_size(GX,BX);
  this->k_udirect2b.run(&this->atom->x, &this->atom->extra,
                        &coeff_amtype, &coeff_amclass, &sp_polar,
                        &this->nbor->dev_nbor, &this->_nbor_data->begin(),
                        &this->dev_short_nbor,
                        &this->_fieldp, &ainum, &_nall, &nbor_pitch,
                        &this->_threads_per_atom, &this->_aewald, &this->_off2_polar,
                        &_polar_dscale, &_polar_uscale);

  this->time_pair.stop();
  return GX;
}

// ---------------------------------------------------------------------------
// Compute the direct real space term of the induced field
//   returning field and fieldp
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void HippoT::compute_umutual2b(int * /*host_amtype*/, int * /*host_amgroup*/, double ** /*host_rpole*/,
                               double **host_uind, double **host_uinp, double * /*host_pval*/,
                               const double aewald, const double off2_polar, void ** /*fieldp_ptr*/) {

  // cast necessary data arrays from host to device

  this->cast_extra_data(nullptr, nullptr, nullptr, host_uind, host_uinp, nullptr);
  this->atom->add_extra_data();

  this->_off2_polar = off2_polar;
  this->_aewald = aewald;
  umutual2b(this->_eflag,this->_vflag);

  // copy field and fieldp from device to host (_fieldp store both arrays, one after another)
  // NOTE: move this step to update_fieldp() to delay device-host transfer
  // *fieldp_ptr=this->_fieldp.host.begin();
  // this->_fieldp.update_host(this->_max_fieldp_size*8,false);
}

// ---------------------------------------------------------------------------
// Launch the real-space induced field kernel
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int HippoT::umutual2b(const int /*eflag*/, const int /*vflag*/) {
  int ainum=this->ans->inum();
  if (ainum == 0)
    return 0;

  int _nall=this->atom->nall();
  int nbor_pitch=this->nbor->nbor_pitch();

  // Compute the block size and grid size to keep all cores busy
  const int BX=this->block_size();
  int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
                               (BX/this->_threads_per_atom)));
  this->time_pair.start();

  // Build the short neighbor list if not done yet
  if (!this->short_nbor_polar_avail) {
    this->k_short_nbor.set_size(GX,BX);
    this->k_short_nbor.run(&this->atom->x, &this->nbor->dev_nbor,
                           &this->_nbor_data->begin(), &this->dev_short_nbor,
                           &this->_off2_polar, &ainum, &nbor_pitch,
                           &this->_threads_per_atom);
    this->short_nbor_polar_avail = true;
  }

  this->k_umutual2b.set_size(GX,BX);
  this->k_umutual2b.run(&this->atom->x, &this->atom->extra,
                        &coeff_amtype, &coeff_amclass, &sp_polar,
                        &this->nbor->dev_nbor, &this->_nbor_data->begin(),
                        &this->dev_short_nbor, &this->_fieldp, &ainum, &_nall,
                        &nbor_pitch, &this->_threads_per_atom, &this->_aewald,
                        &this->_off2_polar, &_polar_dscale, &_polar_uscale);

  this->time_pair.stop();
  return GX;
}

// ---------------------------------------------------------------------------
// Reneighbor on GPU if necessary, and then compute polar real-space
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void HippoT::compute_polar_real(int * /*host_amtype*/, int * /*host_amgroup*/, double ** /*host_rpole*/,
                                double **host_uind, double **host_uinp, double * /*host_pval*/,
                                const bool eflag_in, const bool vflag_in,
                                const bool eatom, const bool vatom,
                                const double aewald, const double felec,
                                const double off2_polar, void **tep_ptr) {
  // cast necessary data arrays from host to device

  this->cast_extra_data(nullptr, nullptr, nullptr, host_uind, host_uinp, nullptr);
  this->atom->add_extra_data();

  *tep_ptr=this->_tep.host.begin();

  this->_off2_polar = off2_polar;
  this->_felec = felec;
  this->_aewald = aewald;
  const int red_blocks=polar_real(this->_eflag,this->_vflag);

  // only copy answers (forces, energies and virial) back from the device
  //   in the last kernel in a timestep (which is polar_real here)
  this->ans->copy_answers(eflag_in,vflag_in,eatom,vatom,red_blocks);
  this->device->add_ans_object(this->ans);

  // copy tep from device to host
  this->_tep.update_host(this->_max_tep_size*3,false);
}

// ---------------------------------------------------------------------------
// Launch the polar real-space kernel
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int HippoT::polar_real(const int eflag, const int vflag) {
  int ainum=this->ans->inum();
  if (ainum == 0)
    return 0;

  int _nall=this->atom->nall();
  int nbor_pitch=this->nbor->nbor_pitch();

  // Compute the block size and grid size to keep all cores busy

  const int BX=this->block_size();
  const int GX=static_cast<int>(ceil(static_cast<double>(ainum)/(BX/this->_threads_per_atom)));

  this->time_pair.start();

  // Build the short neighbor list if not done yet
  if (!this->short_nbor_polar_avail) {
    this->k_short_nbor.set_size(GX,BX);
    this->k_short_nbor.run(&this->atom->x, &this->nbor->dev_nbor,
                          &this->_nbor_data->begin(),
                          &this->dev_short_nbor, &this->_off2_polar, &ainum,
                          &nbor_pitch, &this->_threads_per_atom);
    this->short_nbor_polar_avail = true;
  }

  this->k_polar.set_size(GX,BX);
  this->k_polar.run(&this->atom->x, &this->atom->extra,
                    &coeff_amtype, &coeff_amclass, &sp_polar,
                    &this->nbor->dev_nbor, &this->_nbor_data->begin(),
                    &this->dev_short_nbor,
                    &this->ans->force, &this->ans->engv, &this->_tep,
                    &eflag, &vflag, &ainum, &_nall, &nbor_pitch,
                    &this->_threads_per_atom,  &this->_aewald, &this->_felec,
                    &this->_off2_polar, &_polar_dscale, &_polar_uscale);
  this->time_pair.stop();

  // Signal that short nbor list is not avail for the next time step
  //   do it here because polar_real() is the last kernel in a time step at this point

  this->short_nbor_polar_avail = false;

  return GX;
}

template class Hippo<PRECISION,ACC_PRECISION>;
}