File: cgbtrs.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (215 lines) | stat: -rw-r--r-- 6,489 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
      SUBROUTINE CGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB,
     $                   INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            AB( LDAB, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  CGBTRS solves a system of linear equations
*     A * X = B,  A**T * X = B,  or  A**H * X = B
*  with a general band matrix A using the LU factorization computed
*  by CGBTRF.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER*1
*          Specifies the form of the system of equations.
*          = 'N':  A * X = B     (No transpose)
*          = 'T':  A**T * X = B  (Transpose)
*          = 'C':  A**H * X = B  (Conjugate transpose)
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  KL      (input) INTEGER
*          The number of subdiagonals within the band of A.  KL >= 0.
*
*  KU      (input) INTEGER
*          The number of superdiagonals within the band of A.  KU >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  AB      (input) COMPLEX array, dimension (LDAB,N)
*          Details of the LU factorization of the band matrix A, as
*          computed by CGBTRF.  U is stored as an upper triangular band
*          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
*          the multipliers used during the factorization are stored in
*          rows KL+KU+2 to 2*KL+KU+1.
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices; for 1 <= i <= N, row i of the matrix was
*          interchanged with row IPIV(i).
*
*  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
*          On entry, the right hand side matrix B.
*          On exit, the solution matrix X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LNOTI, NOTRAN
      INTEGER            I, J, KD, L, LM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMV, CGERU, CLACGV, CSWAP, CTBSV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      NOTRAN = LSAME( TRANS, 'N' )
      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $    LSAME( TRANS, 'C' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KL.LT.0 ) THEN
         INFO = -3
      ELSE IF( KU.LT.0 ) THEN
         INFO = -4
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDAB.LT.( 2*KL+KU+1 ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGBTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
      KD = KU + KL + 1
      LNOTI = KL.GT.0
*
      IF( NOTRAN ) THEN
*
*        Solve  A*X = B.
*
*        Solve L*X = B, overwriting B with X.
*
*        L is represented as a product of permutations and unit lower
*        triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1),
*        where each transformation L(i) is a rank-one modification of
*        the identity matrix.
*
         IF( LNOTI ) THEN
            DO 10 J = 1, N - 1
               LM = MIN( KL, N-J )
               L = IPIV( J )
               IF( L.NE.J )
     $            CALL CSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
               CALL CGERU( LM, NRHS, -ONE, AB( KD+1, J ), 1, B( J, 1 ),
     $                     LDB, B( J+1, 1 ), LDB )
   10       CONTINUE
         END IF
*
         DO 20 I = 1, NRHS
*
*           Solve U*X = B, overwriting B with X.
*
            CALL CTBSV( 'Upper', 'No transpose', 'Non-unit', N, KL+KU,
     $                  AB, LDAB, B( 1, I ), 1 )
   20    CONTINUE
*
      ELSE IF( LSAME( TRANS, 'T' ) ) THEN
*
*        Solve A**T * X = B.
*
         DO 30 I = 1, NRHS
*
*           Solve U**T * X = B, overwriting B with X.
*
            CALL CTBSV( 'Upper', 'Transpose', 'Non-unit', N, KL+KU, AB,
     $                  LDAB, B( 1, I ), 1 )
   30    CONTINUE
*
*        Solve L**T * X = B, overwriting B with X.
*
         IF( LNOTI ) THEN
            DO 40 J = N - 1, 1, -1
               LM = MIN( KL, N-J )
               CALL CGEMV( 'Transpose', LM, NRHS, -ONE, B( J+1, 1 ),
     $                     LDB, AB( KD+1, J ), 1, ONE, B( J, 1 ), LDB )
               L = IPIV( J )
               IF( L.NE.J )
     $            CALL CSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
   40       CONTINUE
         END IF
*
      ELSE
*
*        Solve A**H * X = B.
*
         DO 50 I = 1, NRHS
*
*           Solve U**H * X = B, overwriting B with X.
*
            CALL CTBSV( 'Upper', 'Conjugate transpose', 'Non-unit', N,
     $                  KL+KU, AB, LDAB, B( 1, I ), 1 )
   50    CONTINUE
*
*        Solve L**H * X = B, overwriting B with X.
*
         IF( LNOTI ) THEN
            DO 60 J = N - 1, 1, -1
               LM = MIN( KL, N-J )
               CALL CLACGV( NRHS, B( J, 1 ), LDB )
               CALL CGEMV( 'Conjugate transpose', LM, NRHS, -ONE,
     $                     B( J+1, 1 ), LDB, AB( KD+1, J ), 1, ONE,
     $                     B( J, 1 ), LDB )
               CALL CLACGV( NRHS, B( J, 1 ), LDB )
               L = IPIV( J )
               IF( L.NE.J )
     $            CALL CSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
   60       CONTINUE
         END IF
      END IF
      RETURN
*
*     End of CGBTRS
*
      END