File: cggglm.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (193 lines) | stat: -rw-r--r-- 5,961 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
      SUBROUTINE CGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
     $                   INFO )
*
*  -- LAPACK driver routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     November 14, 1994
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LWORK, M, N, P
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
     $                   X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  CGGGLM solves a general Gauss-Markov linear model (GLM) problem:
*
*          minimize || y ||_2   subject to   d = A*x + B*y
*              x
*
*  where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
*  given N-vector. It is assumed that M <= N <= M+P, and
*
*             rank(A) = M    and    rank( A B ) = N.
*
*  Under these assumptions, the constrained equation is always
*  consistent, and there is a unique solution x and a minimal 2-norm
*  solution y, which is obtained using a generalized QR factorization
*  of A and B.
*
*  In particular, if matrix B is square nonsingular, then the problem
*  GLM is equivalent to the following weighted linear least squares
*  problem
*
*               minimize || inv(B)*(d-A*x) ||_2
*                   x
*
*  where inv(B) denotes the inverse of B.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The number of rows of the matrices A and B.  N >= 0.
*
*  M       (input) INTEGER
*          The number of columns of the matrix A.  0 <= M <= N.
*
*  P       (input) INTEGER
*          The number of columns of the matrix B.  P >= N-M.
*
*  A       (input/output) COMPLEX array, dimension (LDA,M)
*          On entry, the N-by-M matrix A.
*          On exit, A is destroyed.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,N).
*
*  B       (input/output) COMPLEX array, dimension (LDB,P)
*          On entry, the N-by-P matrix B.
*          On exit, B is destroyed.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,N).
*
*  D       (input/output) COMPLEX array, dimension (N)
*          On entry, D is the left hand side of the GLM equation.
*          On exit, D is destroyed.
*
*  X       (output) COMPLEX array, dimension (M)
*  Y       (output) COMPLEX array, dimension (P)
*          On exit, X and Y are the solutions of the GLM problem.
*
*  WORK    (workspace/output) COMPLEX array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,N+M+P).
*          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
*          where NB is an upper bound for the optimal blocksizes for
*          CGEQRF, CGERQF, CUNMQR and CUNMRQ.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  ===================================================================
*
*     .. Parameters ..
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, LOPT, NP
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CGEMV, CGGQRF, CTRSV, CUNMQR, CUNMRQ,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      NP = MIN( N, P )
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
         INFO = -2
      ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LWORK.LT.MAX( 1, N+M+P ) ) THEN
         INFO = -12
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGGGLM', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Compute the GQR factorization of matrices A and B:
*
*            Q'*A = ( R11 ) M,    Q'*B*Z' = ( T11   T12 ) M
*                   (  0  ) N-M             (  0    T22 ) N-M
*                      M                     M+P-N  N-M
*
*     where R11 and T22 are upper triangular, and Q and Z are
*     unitary.
*
      CALL CGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ),
     $             WORK( M+NP+1 ), LWORK-M-NP, INFO )
      LOPT = WORK( M+NP+1 )
*
*     Update left-hand-side vector d = Q'*d = ( d1 ) M
*                                             ( d2 ) N-M
*
      CALL CUNMQR( 'Left', 'Conjugate transpose', N, 1, M, A, LDA, WORK,
     $             D, MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
      LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) )
*
*     Solve T22*y2 = d2 for y2
*
      CALL CTRSV( 'Upper', 'No transpose', 'Non unit', N-M,
     $            B( M+1, M+P-N+1 ), LDB, D( M+1 ), 1 )
      CALL CCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 )
*
*     Set y1 = 0
*
      DO 10 I = 1, M + P - N
         Y( I ) = CZERO
   10 CONTINUE
*
*     Update d1 = d1 - T12*y2
*
      CALL CGEMV( 'No transpose', M, N-M, -CONE, B( 1, M+P-N+1 ), LDB,
     $            Y( M+P-N+1 ), 1, CONE, D, 1 )
*
*     Solve triangular system: R11*x = d1
*
      CALL CTRSV( 'Upper', 'No Transpose', 'Non unit', M, A, LDA, D, 1 )
*
*     Copy D to X
*
      CALL CCOPY( M, D, 1, X, 1 )
*
*     Backward transformation y = Z'*y
*
      CALL CUNMRQ( 'Left', 'Conjugate transpose', P, 1, NP,
     $             B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,
     $             MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
      WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) )
*
      RETURN
*
*     End of CGGGLM
*
      END