File: cgglse.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (198 lines) | stat: -rw-r--r-- 6,176 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
      SUBROUTINE CGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
     $                   INFO )
*
*  -- LAPACK driver routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LWORK, M, N, P
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), B( LDB, * ), C( * ), D( * ),
     $                   WORK( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  CGGLSE solves the linear equality-constrained least squares (LSE)
*  problem:
*
*          minimize || c - A*x ||_2   subject to   B*x = d
*
*  where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
*  M-vector, and d is a given P-vector. It is assumed that
*  P <= N <= M+P, and
*
*           rank(B) = P and  rank( ( A ) ) = N.
*                                ( ( B ) )
*
*  These conditions ensure that the LSE problem has a unique solution,
*  which is obtained using a GRQ factorization of the matrices B and A.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrices A and B. N >= 0.
*
*  P       (input) INTEGER
*          The number of rows of the matrix B. 0 <= P <= N <= M+P.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit, A is destroyed.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  B       (input/output) COMPLEX array, dimension (LDB,N)
*          On entry, the P-by-N matrix B.
*          On exit, B is destroyed.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,P).
*
*  C       (input/output) COMPLEX array, dimension (M)
*          On entry, C contains the right hand side vector for the
*          least squares part of the LSE problem.
*          On exit, the residual sum of squares for the solution
*          is given by the sum of squares of elements N-P+1 to M of
*          vector C.
*
*  D       (input/output) COMPLEX array, dimension (P)
*          On entry, D contains the right hand side vector for the
*          constrained equation.
*          On exit, D is destroyed.
*
*  X       (output) COMPLEX array, dimension (N)
*          On exit, X is the solution of the LSE problem.
*
*  WORK    (workspace/output) COMPLEX array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,M+N+P).
*          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
*          where NB is an upper bound for the optimal blocksizes for
*          CGEQRF, CGERQF, CUNMQR and CUNMRQ.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            CONE
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            LOPT, MN, NR
*     ..
*     .. External Subroutines ..
      EXTERNAL           CAXPY, CCOPY, CGEMV, CGGRQF, CTRMV, CTRSV,
     $                   CUNMQR, CUNMRQ, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      MN = MIN( M, N )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
         INFO = -7
      ELSE IF( LWORK.LT.MAX( 1, M+N+P ) ) THEN
         INFO = -12
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGGLSE', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Compute the GRQ factorization of matrices B and A:
*
*            B*Q' = (  0  T12 ) P   Z'*A*Q' = ( R11 R12 ) N-P
*                     N-P  P                  (  0  R22 ) M+P-N
*                                               N-P  P
*
*     where T12 and R11 are upper triangular, and Q and Z are
*     unitary.
*
      CALL CGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
     $             WORK( P+MN+1 ), LWORK-P-MN, INFO )
      LOPT = WORK( P+MN+1 )
*
*     Update c = Z'*c = ( c1 ) N-P
*                       ( c2 ) M+P-N
*
      CALL CUNMQR( 'Left', 'Conjugate Transpose', M, 1, MN, A, LDA,
     $             WORK( P+1 ), C, MAX( 1, M ), WORK( P+MN+1 ),
     $             LWORK-P-MN, INFO )
      LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
*
*     Solve T12*x2 = d for x2
*
      CALL CTRSV( 'Upper', 'No transpose', 'Non unit', P, B( 1, N-P+1 ),
     $            LDB, D, 1 )
*
*     Update c1
*
      CALL CGEMV( 'No transpose', N-P, P, -CONE, A( 1, N-P+1 ), LDA, D,
     $            1, CONE, C, 1 )
*
*     Sovle R11*x1 = c1 for x1
*
      CALL CTRSV( 'Upper', 'No transpose', 'Non unit', N-P, A, LDA, C,
     $            1 )
*
*     Put the solutions in X
*
      CALL CCOPY( N-P, C, 1, X, 1 )
      CALL CCOPY( P, D, 1, X( N-P+1 ), 1 )
*
*     Compute the residual vector:
*
      IF( M.LT.N ) THEN
         NR = M + P - N
         CALL CGEMV( 'No transpose', NR, N-M, -CONE, A( N-P+1, M+1 ),
     $               LDA, D( NR+1 ), 1, CONE, C( N-P+1 ), 1 )
      ELSE
         NR = P
      END IF
      CALL CTRMV( 'Upper', 'No transpose', 'Non unit', NR,
     $            A( N-P+1, N-P+1 ), LDA, D, 1 )
      CALL CAXPY( NR, -CONE, D, 1, C( N-P+1 ), 1 )
*
*     Backward transformation x = Q'*x
*
      CALL CUNMRQ( 'Left', 'Conjugate Transpose', N, 1, P, B, LDB,
     $             WORK( 1 ), X, N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
      WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
*
      RETURN
*
*     End of CGGLSE
*
      END