File: cgttrs.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (206 lines) | stat: -rw-r--r-- 6,245 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
      SUBROUTINE CGTTRS( TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB,
     $                   INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
*     ..
*
*  Purpose
*  =======
*
*  CGTTRS solves one of the systems of equations
*     A * X = B,  A**T * X = B,  or  A**H * X = B,
*  with a tridiagonal matrix A using the LU factorization computed
*  by CGTTRF.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER
*          Specifies the form of the system of equations:
*          = 'N':  A * X = B     (No transpose)
*          = 'T':  A**T * X = B  (Transpose)
*          = 'C':  A**H * X = B  (Conjugate transpose)
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  DL      (input) COMPLEX array, dimension (N-1)
*          The (n-1) multipliers that define the matrix L from the
*          LU factorization of A.
*
*  D       (input) COMPLEX array, dimension (N)
*          The n diagonal elements of the upper triangular matrix U from
*          the LU factorization of A.
*
*  DU      (input) COMPLEX array, dimension (N-1)
*          The (n-1) elements of the first superdiagonal of U.
*
*  DU2     (input) COMPLEX array, dimension (N-2)
*          The (n-2) elements of the second superdiagonal of U.
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices; for 1 <= i <= n, row i of the matrix was
*          interchanged with row IPIV(i).  IPIV(i) will always be either
*          i or i+1; IPIV(i) = i indicates a row interchange was not
*          required.
*
*  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
*          On entry, the right hand side matrix B.
*          On exit, B is overwritten by the solution matrix X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            NOTRAN
      INTEGER            I, J
      COMPLEX            TEMP
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG, MAX
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      NOTRAN = LSAME( TRANS, 'N' )
      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $    LSAME( TRANS, 'C' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGTTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
      IF( NOTRAN ) THEN
*
*        Solve A*X = B using the LU factorization of A,
*        overwriting each right hand side vector with its solution.
*
         DO 30 J = 1, NRHS
*
*           Solve L*x = b.
*
            DO 10 I = 1, N - 1
               IF( IPIV( I ).EQ.I ) THEN
                  B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
               ELSE
                  TEMP = B( I, J )
                  B( I, J ) = B( I+1, J )
                  B( I+1, J ) = TEMP - DL( I )*B( I, J )
               END IF
   10       CONTINUE
*
*           Solve U*x = b.
*
            B( N, J ) = B( N, J ) / D( N )
            IF( N.GT.1 )
     $         B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
     $                       D( N-1 )
            DO 20 I = N - 2, 1, -1
               B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
     $                     B( I+2, J ) ) / D( I )
   20       CONTINUE
   30    CONTINUE
      ELSE IF( LSAME( TRANS, 'T' ) ) THEN
*
*        Solve A**T * X = B.
*
         DO 60 J = 1, NRHS
*
*           Solve U**T * x = b.
*
            B( 1, J ) = B( 1, J ) / D( 1 )
            IF( N.GT.1 )
     $         B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
            DO 40 I = 3, N
               B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-DU2( I-2 )*
     $                     B( I-2, J ) ) / D( I )
   40       CONTINUE
*
*           Solve L**T * x = b.
*
            DO 50 I = N - 1, 1, -1
               IF( IPIV( I ).EQ.I ) THEN
                  B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
               ELSE
                  TEMP = B( I+1, J )
                  B( I+1, J ) = B( I, J ) - DL( I )*TEMP
                  B( I, J ) = TEMP
               END IF
   50       CONTINUE
   60    CONTINUE
      ELSE
*
*        Solve A**H * X = B.
*
         DO 90 J = 1, NRHS
*
*           Solve U**H * x = b.
*
            B( 1, J ) = B( 1, J ) / CONJG( D( 1 ) )
            IF( N.GT.1 )
     $         B( 2, J ) = ( B( 2, J )-CONJG( DU( 1 ) )*B( 1, J ) ) /
     $                     CONJG( D( 2 ) )
            DO 70 I = 3, N
               B( I, J ) = ( B( I, J )-CONJG( DU( I-1 ) )*B( I-1, J )-
     $                     CONJG( DU2( I-2 ) )*B( I-2, J ) ) /
     $                     CONJG( D( I ) )
   70       CONTINUE
*
*           Solve L**H * x = b.
*
            DO 80 I = N - 1, 1, -1
               IF( IPIV( I ).EQ.I ) THEN
                  B( I, J ) = B( I, J ) - CONJG( DL( I ) )*B( I+1, J )
               ELSE
                  TEMP = B( I+1, J )
                  B( I+1, J ) = B( I, J ) - CONJG( DL( I ) )*TEMP
                  B( I, J ) = TEMP
               END IF
   80       CONTINUE
   90    CONTINUE
      END IF
*
*     End of CGTTRS
*
      END