File: chegs2.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (225 lines) | stat: -rw-r--r-- 7,597 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
      SUBROUTINE CHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, ITYPE, LDA, LDB, N
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  CHEGS2 reduces a complex Hermitian-definite generalized
*  eigenproblem to standard form.
*
*  If ITYPE = 1, the problem is A*x = lambda*B*x,
*  and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
*
*  If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
*  B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.
*
*  B must have been previously factorized as U'*U or L*L' by CPOTRF.
*
*  Arguments
*  =========
*
*  ITYPE   (input) INTEGER
*          = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
*          = 2 or 3: compute U*A*U' or L'*A*L.
*
*  UPLO    (input) CHARACTER
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix A is stored, and how B has been factorized.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrices A and B.  N >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
*          n by n upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading n by n lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*
*          On exit, if INFO = 0, the transformed matrix, stored in the
*          same format as A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  B       (input) COMPLEX array, dimension (LDB,N)
*          The triangular factor from the Cholesky factorization of B,
*          as returned by CPOTRF.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, HALF
      PARAMETER          ( ONE = 1.0E+0, HALF = 0.5E+0 )
      COMPLEX            CONE
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            K
      REAL               AKK, BKK
      COMPLEX            CT
*     ..
*     .. External Subroutines ..
      EXTERNAL           CAXPY, CHER2, CLACGV, CSSCAL, CTRMV, CTRSV,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
         INFO = -1
      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CHEGS2', -INFO )
         RETURN
      END IF
*
      IF( ITYPE.EQ.1 ) THEN
         IF( UPPER ) THEN
*
*           Compute inv(U')*A*inv(U)
*
            DO 10 K = 1, N
*
*              Update the upper triangle of A(k:n,k:n)
*
               AKK = A( K, K )
               BKK = B( K, K )
               AKK = AKK / BKK**2
               A( K, K ) = AKK
               IF( K.LT.N ) THEN
                  CALL CSSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
                  CT = -HALF*AKK
                  CALL CLACGV( N-K, A( K, K+1 ), LDA )
                  CALL CLACGV( N-K, B( K, K+1 ), LDB )
                  CALL CAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
     $                        LDA )
                  CALL CHER2( UPLO, N-K, -CONE, A( K, K+1 ), LDA,
     $                        B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
                  CALL CAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
     $                        LDA )
                  CALL CLACGV( N-K, B( K, K+1 ), LDB )
                  CALL CTRSV( UPLO, 'Conjugate transpose', 'Non-unit',
     $                        N-K, B( K+1, K+1 ), LDB, A( K, K+1 ),
     $                        LDA )
                  CALL CLACGV( N-K, A( K, K+1 ), LDA )
               END IF
   10       CONTINUE
         ELSE
*
*           Compute inv(L)*A*inv(L')
*
            DO 20 K = 1, N
*
*              Update the lower triangle of A(k:n,k:n)
*
               AKK = A( K, K )
               BKK = B( K, K )
               AKK = AKK / BKK**2
               A( K, K ) = AKK
               IF( K.LT.N ) THEN
                  CALL CSSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
                  CT = -HALF*AKK
                  CALL CAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
                  CALL CHER2( UPLO, N-K, -CONE, A( K+1, K ), 1,
     $                        B( K+1, K ), 1, A( K+1, K+1 ), LDA )
                  CALL CAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
                  CALL CTRSV( UPLO, 'No transpose', 'Non-unit', N-K,
     $                        B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
               END IF
   20       CONTINUE
         END IF
      ELSE
         IF( UPPER ) THEN
*
*           Compute U*A*U'
*
            DO 30 K = 1, N
*
*              Update the upper triangle of A(1:k,1:k)
*
               AKK = A( K, K )
               BKK = B( K, K )
               CALL CTRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
     $                     LDB, A( 1, K ), 1 )
               CT = HALF*AKK
               CALL CAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
               CALL CHER2( UPLO, K-1, CONE, A( 1, K ), 1, B( 1, K ), 1,
     $                     A, LDA )
               CALL CAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
               CALL CSSCAL( K-1, BKK, A( 1, K ), 1 )
               A( K, K ) = AKK*BKK**2
   30       CONTINUE
         ELSE
*
*           Compute L'*A*L
*
            DO 40 K = 1, N
*
*              Update the lower triangle of A(1:k,1:k)
*
               AKK = A( K, K )
               BKK = B( K, K )
               CALL CLACGV( K-1, A( K, 1 ), LDA )
               CALL CTRMV( UPLO, 'Conjugate transpose', 'Non-unit', K-1,
     $                     B, LDB, A( K, 1 ), LDA )
               CT = HALF*AKK
               CALL CLACGV( K-1, B( K, 1 ), LDB )
               CALL CAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
               CALL CHER2( UPLO, K-1, CONE, A( K, 1 ), LDA, B( K, 1 ),
     $                     LDB, A, LDA )
               CALL CAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
               CALL CLACGV( K-1, B( K, 1 ), LDB )
               CALL CSSCAL( K-1, BKK, A( K, 1 ), LDA )
               CALL CLACGV( K-1, A( K, 1 ), LDA )
               A( K, K ) = AKK*BKK**2
   40       CONTINUE
         END IF
      END IF
      RETURN
*
*     End of CHEGS2
*
      END