1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
$ IWORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER INFO, LDQ, LDQS, N, QSIZ
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL D( * ), E( * ), RWORK( * )
COMPLEX Q( LDQ, * ), QSTORE( LDQS, * )
* ..
*
* Purpose
* =======
*
* Using the divide and conquer method, CLAED0 computes all eigenvalues
* of a symmetric tridiagonal matrix which is one diagonal block of
* those from reducing a dense or band Hermitian matrix and
* corresponding eigenvectors of the dense or band matrix.
*
* Arguments
* =========
*
* QSIZ (input) INTEGER
* The dimension of the unitary matrix used to reduce
* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
*
* N (input) INTEGER
* The dimension of the symmetric tridiagonal matrix. N >= 0.
*
* D (input/output) REAL array, dimension (N)
* On entry, the diagonal elements of the tridiagonal matrix.
* On exit, the eigenvalues in ascending order.
*
* E (input/output) REAL array, dimension (N-1)
* On entry, the off-diagonal elements of the tridiagonal matrix.
* On exit, E has been destroyed.
*
* Q (input/output) COMPLEX array, dimension (LDQ,N)
* On entry, Q must contain an QSIZ x N matrix whose columns
* unitarily orthonormal. It is a part of the unitary matrix
* that reduces the full dense Hermitian matrix to a
* (reducible) symmetric tridiagonal matrix.
*
* LDQ (input) INTEGER
* The leading dimension of the array Q. LDQ >= max(1,N).
*
* IWORK (workspace) INTEGER array,
* the dimension of IWORK must be at least
* 6 + 6*N + 5*N*lg N
* ( lg( N ) = smallest integer k
* such that 2^k >= N )
*
* RWORK (workspace) REAL array,
* dimension (1 + 3*N + 2*N*lg N + 3*N**2)
* ( lg( N ) = smallest integer k
* such that 2^k >= N )
*
* QSTORE (workspace) COMPLEX array, dimension (LDQS, N)
* Used to store parts of
* the eigenvector matrix when the updating matrix multiplies
* take place.
*
* LDQS (input) INTEGER
* The leading dimension of the array QSTORE.
* LDQS >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
* > 0: The algorithm failed to compute an eigenvalue while
* working on the submatrix lying in rows and columns
* INFO/(N+1) through mod(INFO,N+1).
*
* =====================================================================
*
* Warning: N could be as big as QSIZ!
*
* .. Parameters ..
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
REAL TWO
PARAMETER ( TWO = 2.E0 )
* ..
* .. Local Scalars ..
INTEGER CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
$ IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
$ J, K, LGN, LL, MATSIZ, MSD2, SMM1, SPM1, SPM2,
$ SUBMAT, SUBPBS, TLVLS
REAL TEMP
* ..
* .. External Subroutines ..
EXTERNAL CCOPY, CLACRM, CLAED7, SCOPY, SSTEQR, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, INT, LOG, MAX, REAL
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
* IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN
* INFO = -1
* ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )
* $ THEN
IF( QSIZ.LT.MAX( 0, N ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLAED0', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Determine the size and placement of the submatrices, and save in
* the leading elements of IWORK.
*
IWORK( 1 ) = N
SUBPBS = 1
TLVLS = 0
10 CONTINUE
IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
DO 20 J = SUBPBS, 1, -1
IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
IWORK( 2*J-1 ) = IWORK( J ) / 2
20 CONTINUE
TLVLS = TLVLS + 1
SUBPBS = 2*SUBPBS
GO TO 10
END IF
DO 30 J = 2, SUBPBS
IWORK( J ) = IWORK( J ) + IWORK( J-1 )
30 CONTINUE
*
* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
* using rank-1 modifications (cuts).
*
SPM1 = SUBPBS - 1
DO 40 I = 1, SPM1
SUBMAT = IWORK( I ) + 1
SMM1 = SUBMAT - 1
D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
40 CONTINUE
*
INDXQ = 4*N + 3
*
* Set up workspaces for eigenvalues only/accumulate new vectors
* routine
*
TEMP = LOG( REAL( N ) ) / LOG( TWO )
LGN = INT( TEMP )
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
IPRMPT = INDXQ + N + 1
IPERM = IPRMPT + N*LGN
IQPTR = IPERM + N*LGN
IGIVPT = IQPTR + N + 2
IGIVCL = IGIVPT + N*LGN
*
IGIVNM = 1
IQ = IGIVNM + 2*N*LGN
IWREM = IQ + N**2 + 1
* Initialize pointers
DO 50 I = 0, SUBPBS
IWORK( IPRMPT+I ) = 1
IWORK( IGIVPT+I ) = 1
50 CONTINUE
IWORK( IQPTR ) = 1
*
* Solve each submatrix eigenproblem at the bottom of the divide and
* conquer tree.
*
CURR = 0
DO 70 I = 0, SPM1
IF( I.EQ.0 ) THEN
SUBMAT = 1
MATSIZ = IWORK( 1 )
ELSE
SUBMAT = IWORK( I ) + 1
MATSIZ = IWORK( I+1 ) - IWORK( I )
END IF
LL = IQ - 1 + IWORK( IQPTR+CURR )
CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
$ RWORK( LL ), MATSIZ, RWORK, INFO )
CALL CLACRM( QSIZ, MATSIZ, Q( 1, SUBMAT ), LDQ, RWORK( LL ),
$ MATSIZ, QSTORE( 1, SUBMAT ), LDQS,
$ RWORK( IWREM ) )
IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
CURR = CURR + 1
IF( INFO.GT.0 ) THEN
INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
RETURN
END IF
K = 1
DO 60 J = SUBMAT, IWORK( I+1 )
IWORK( INDXQ+J ) = K
K = K + 1
60 CONTINUE
70 CONTINUE
*
* Successively merge eigensystems of adjacent submatrices
* into eigensystem for the corresponding larger matrix.
*
* while ( SUBPBS > 1 )
*
CURLVL = 1
80 CONTINUE
IF( SUBPBS.GT.1 ) THEN
SPM2 = SUBPBS - 2
DO 90 I = 0, SPM2, 2
IF( I.EQ.0 ) THEN
SUBMAT = 1
MATSIZ = IWORK( 2 )
MSD2 = IWORK( 1 )
CURPRB = 0
ELSE
SUBMAT = IWORK( I ) + 1
MATSIZ = IWORK( I+2 ) - IWORK( I )
MSD2 = MATSIZ / 2
CURPRB = CURPRB + 1
END IF
*
* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
* into an eigensystem of size MATSIZ. CLAED7 handles the case
* when the eigenvectors of a full or band Hermitian matrix (which
* was reduced to tridiagonal form) are desired.
*
* I am free to use Q as a valuable working space until Loop 150.
*
CALL CLAED7( MATSIZ, MSD2, QSIZ, TLVLS, CURLVL, CURPRB,
$ D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
$ E( SUBMAT+MSD2-1 ), IWORK( INDXQ+SUBMAT ),
$ RWORK( IQ ), IWORK( IQPTR ), IWORK( IPRMPT ),
$ IWORK( IPERM ), IWORK( IGIVPT ),
$ IWORK( IGIVCL ), RWORK( IGIVNM ),
$ Q( 1, SUBMAT ), RWORK( IWREM ),
$ IWORK( SUBPBS+1 ), INFO )
IF( INFO.GT.0 ) THEN
INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
RETURN
END IF
IWORK( I / 2+1 ) = IWORK( I+2 )
90 CONTINUE
SUBPBS = SUBPBS / 2
CURLVL = CURLVL + 1
GO TO 80
END IF
*
* end while
*
* Re-merge the eigenvalues/vectors which were deflated at the final
* merge step.
*
DO 100 I = 1, N
J = IWORK( INDXQ+I )
RWORK( I ) = D( J )
CALL CCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
100 CONTINUE
CALL SCOPY( N, RWORK, 1, D, 1 )
*
RETURN
*
* End of CLAED0
*
END
|