1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
$ B, LDB )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER LDB, LDX, N, NRHS
REAL ALPHA, BETA
* ..
* .. Array Arguments ..
COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ),
$ X( LDX, * )
* ..
*
* Purpose
* =======
*
* CLAGTM performs a matrix-vector product of the form
*
* B := alpha * A * X + beta * B
*
* where A is a tridiagonal matrix of order N, B and X are N by NRHS
* matrices, and alpha and beta are real scalars, each of which may be
* 0., 1., or -1.
*
* Arguments
* =========
*
* TRANS (input) CHARACTER
* Specifies the operation applied to A.
* = 'N': No transpose, B := alpha * A * X + beta * B
* = 'T': Transpose, B := alpha * A**T * X + beta * B
* = 'C': Conjugate transpose, B := alpha * A**H * X + beta * B
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrices X and B.
*
* ALPHA (input) REAL
* The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
* it is assumed to be 0.
*
* DL (input) COMPLEX array, dimension (N-1)
* The (n-1) sub-diagonal elements of T.
*
* D (input) COMPLEX array, dimension (N)
* The diagonal elements of T.
*
* DU (input) COMPLEX array, dimension (N-1)
* The (n-1) super-diagonal elements of T.
*
* X (input) COMPLEX array, dimension (LDX,NRHS)
* The N by NRHS matrix X.
* LDX (input) INTEGER
* The leading dimension of the array X. LDX >= max(N,1).
*
* BETA (input) REAL
* The scalar beta. BETA must be 0., 1., or -1.; otherwise,
* it is assumed to be 1.
*
* B (input/output) COMPLEX array, dimension (LDB,NRHS)
* On entry, the N by NRHS matrix B.
* On exit, B is overwritten by the matrix expression
* B := alpha * A * X + beta * B.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(N,1).
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 )
$ RETURN
*
* Multiply B by BETA if BETA.NE.1.
*
IF( BETA.EQ.ZERO ) THEN
DO 20 J = 1, NRHS
DO 10 I = 1, N
B( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
ELSE IF( BETA.EQ.-ONE ) THEN
DO 40 J = 1, NRHS
DO 30 I = 1, N
B( I, J ) = -B( I, J )
30 CONTINUE
40 CONTINUE
END IF
*
IF( ALPHA.EQ.ONE ) THEN
IF( LSAME( TRANS, 'N' ) ) THEN
*
* Compute B := B + A*X
*
DO 60 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
$ DU( 1 )*X( 2, J )
B( N, J ) = B( N, J ) + DL( N-1 )*X( N-1, J ) +
$ D( N )*X( N, J )
DO 50 I = 2, N - 1
B( I, J ) = B( I, J ) + DL( I-1 )*X( I-1, J ) +
$ D( I )*X( I, J ) + DU( I )*X( I+1, J )
50 CONTINUE
END IF
60 CONTINUE
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
*
* Compute B := B + A**T * X
*
DO 80 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
$ DL( 1 )*X( 2, J )
B( N, J ) = B( N, J ) + DU( N-1 )*X( N-1, J ) +
$ D( N )*X( N, J )
DO 70 I = 2, N - 1
B( I, J ) = B( I, J ) + DU( I-1 )*X( I-1, J ) +
$ D( I )*X( I, J ) + DL( I )*X( I+1, J )
70 CONTINUE
END IF
80 CONTINUE
ELSE IF( LSAME( TRANS, 'C' ) ) THEN
*
* Compute B := B + A**H * X
*
DO 100 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) + CONJG( D( 1 ) )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) + CONJG( D( 1 ) )*X( 1, J ) +
$ CONJG( DL( 1 ) )*X( 2, J )
B( N, J ) = B( N, J ) + CONJG( DU( N-1 ) )*
$ X( N-1, J ) + CONJG( D( N ) )*X( N, J )
DO 90 I = 2, N - 1
B( I, J ) = B( I, J ) + CONJG( DU( I-1 ) )*
$ X( I-1, J ) + CONJG( D( I ) )*
$ X( I, J ) + CONJG( DL( I ) )*
$ X( I+1, J )
90 CONTINUE
END IF
100 CONTINUE
END IF
ELSE IF( ALPHA.EQ.-ONE ) THEN
IF( LSAME( TRANS, 'N' ) ) THEN
*
* Compute B := B - A*X
*
DO 120 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
$ DU( 1 )*X( 2, J )
B( N, J ) = B( N, J ) - DL( N-1 )*X( N-1, J ) -
$ D( N )*X( N, J )
DO 110 I = 2, N - 1
B( I, J ) = B( I, J ) - DL( I-1 )*X( I-1, J ) -
$ D( I )*X( I, J ) - DU( I )*X( I+1, J )
110 CONTINUE
END IF
120 CONTINUE
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
*
* Compute B := B - A'*X
*
DO 140 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
$ DL( 1 )*X( 2, J )
B( N, J ) = B( N, J ) - DU( N-1 )*X( N-1, J ) -
$ D( N )*X( N, J )
DO 130 I = 2, N - 1
B( I, J ) = B( I, J ) - DU( I-1 )*X( I-1, J ) -
$ D( I )*X( I, J ) - DL( I )*X( I+1, J )
130 CONTINUE
END IF
140 CONTINUE
ELSE IF( LSAME( TRANS, 'C' ) ) THEN
*
* Compute B := B - A'*X
*
DO 160 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) - CONJG( D( 1 ) )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) - CONJG( D( 1 ) )*X( 1, J ) -
$ CONJG( DL( 1 ) )*X( 2, J )
B( N, J ) = B( N, J ) - CONJG( DU( N-1 ) )*
$ X( N-1, J ) - CONJG( D( N ) )*X( N, J )
DO 150 I = 2, N - 1
B( I, J ) = B( I, J ) - CONJG( DU( I-1 ) )*
$ X( I-1, J ) - CONJG( D( I ) )*
$ X( I, J ) - CONJG( DL( I ) )*
$ X( I+1, J )
150 CONTINUE
END IF
160 CONTINUE
END IF
END IF
RETURN
*
* End of CLAGTM
*
END
|